Fast Computation Using Multi-Zero Neural Networks

C. J. Hu
{"title":"Fast Computation Using Multi-Zero Neural Networks","authors":"C. J. Hu","doi":"10.1109/ELECTR.1991.718262","DOIUrl":null,"url":null,"abstract":"The multi-zero artificial neural network was derived from a study of the stability and convergence properties of a feedback (or auto-associative) neural system. The nonlinear response function of neurons in the system is an odd polynomial (or a topologically similar) function of 2M+1 zeros with odd zeros equal to a set of consecutive integers. If the connection matrix is programmed correctly, the system will then perform stable operations exhibiting the following characteristics. 1. The system will transform any N-bit analog input to an N-bit, M-ary (or M-valued), digital output. 2. The output will be locked-in when the input is removed. It will be changed to another locked-in digital vector when it receives another input. 3. The speed is fast because the circuit is free-running, parallel, and M-ary. The accuracy is high because the computation is digital. Because of these unique properties, the network can be used in the design of a fast computing system. This paper reports the origin of this multi-zero system, the analysis of its properties, and the design of a fast, M-ary, digital multiplier using this system.","PeriodicalId":339281,"journal":{"name":"Electro International, 1991","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electro International, 1991","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECTR.1991.718262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The multi-zero artificial neural network was derived from a study of the stability and convergence properties of a feedback (or auto-associative) neural system. The nonlinear response function of neurons in the system is an odd polynomial (or a topologically similar) function of 2M+1 zeros with odd zeros equal to a set of consecutive integers. If the connection matrix is programmed correctly, the system will then perform stable operations exhibiting the following characteristics. 1. The system will transform any N-bit analog input to an N-bit, M-ary (or M-valued), digital output. 2. The output will be locked-in when the input is removed. It will be changed to another locked-in digital vector when it receives another input. 3. The speed is fast because the circuit is free-running, parallel, and M-ary. The accuracy is high because the computation is digital. Because of these unique properties, the network can be used in the design of a fast computing system. This paper reports the origin of this multi-zero system, the analysis of its properties, and the design of a fast, M-ary, digital multiplier using this system.
基于多零神经网络的快速计算
多零人工神经网络是在研究反馈(或自关联)神经系统的稳定性和收敛性的基础上提出的。系统中神经元的非线性响应函数是2M+1个零的奇多项式(或拓扑相似)函数,其中奇零等于一组连续整数。如果连接矩阵编程正确,则系统将执行稳定的操作,表现出以下特征。1. 该系统将任何n位模拟输入转换为n位,m位(或m值)的数字输出。2. 当输入被移除时,输出将被锁定。当接收到另一个输入时,它将被转换为另一个锁定的数字矢量。3.速度快是因为电路是自由运行的、并联的和m -玛利的。由于计算是数字化的,因此精度很高。由于这些独特的特性,该网络可用于设计快速计算系统。本文介绍了多零系统的由来,分析了多零系统的特性,并利用该系统设计了一种快速的数字乘法器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信