Thermal Infrared Colorization Using Deep Learning

O. Çiftçi, M. A. Akcavol
{"title":"Thermal Infrared Colorization Using Deep Learning","authors":"O. Çiftçi, M. A. Akcavol","doi":"10.1109/ICEEE52452.2021.9415929","DOIUrl":null,"url":null,"abstract":"Day by day the usage of infrared cameras has been increasing in the world. With the increasing use of thermal infrared cameras and images, especially in military, security and medicine, the need for coloring thermal infrared images to visible spectrum has arisen. In this study, a deep based model has been developed to generate visible spectrum images (RGB - Red Green Blue) from thermal infrared (TIR) images. In the proposed model, an autoencoder architecture with skip connections has been used to generate RGB images. KAIST-MS (Korea Advanced Institute of Science and Technology-Multispectral) dataset used for training and test the developed model. The experimental results extensively tested using Peak Signal-to-Noise Ratio (PSNR), Least Absolute Deviations (L1), Root Mean Squared Error (RMSE) and Structural Similarity Index Measure (SSIM).","PeriodicalId":429645,"journal":{"name":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE52452.2021.9415929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Day by day the usage of infrared cameras has been increasing in the world. With the increasing use of thermal infrared cameras and images, especially in military, security and medicine, the need for coloring thermal infrared images to visible spectrum has arisen. In this study, a deep based model has been developed to generate visible spectrum images (RGB - Red Green Blue) from thermal infrared (TIR) images. In the proposed model, an autoencoder architecture with skip connections has been used to generate RGB images. KAIST-MS (Korea Advanced Institute of Science and Technology-Multispectral) dataset used for training and test the developed model. The experimental results extensively tested using Peak Signal-to-Noise Ratio (PSNR), Least Absolute Deviations (L1), Root Mean Squared Error (RMSE) and Structural Similarity Index Measure (SSIM).
使用深度学习的热红外着色
红外摄像机在世界上的使用日益增多。随着热红外摄像机和图像的日益广泛应用,特别是在军事、安全、医学等领域,对热红外图像进行可见光谱着色的需求日益增加。在本研究中,开发了一种基于深度的模型,从热红外(TIR)图像中生成可见光谱图像(RGB -红绿蓝)。在提出的模型中,使用带有跳过连接的自动编码器架构来生成RGB图像。KAIST-MS(韩国先进科学技术-多光谱)数据集用于训练和测试开发的模型。采用峰值信噪比(PSNR)、最小绝对偏差(L1)、均方根误差(RMSE)和结构相似性指数测量(SSIM)对实验结果进行了广泛的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信