Network traffic shaping based on prediction of polynomial trend self-similar time series

Anatolii Omelchenko, E. A. Rozdymakha, Oleksii V. Fedorovz
{"title":"Network traffic shaping based on prediction of polynomial trend self-similar time series","authors":"Anatolii Omelchenko, E. A. Rozdymakha, Oleksii V. Fedorovz","doi":"10.1109/RADIOELEK.2015.7129059","DOIUrl":null,"url":null,"abstract":"In the present paper shaping algorithms development is considered. Most attention is paid to shaping algorithms based on network traffic prediction. Estimates of prediction-based shapers efficiency for different forecasting techniques are obtained. It is shown that a shaping algorithm should take into account both the prehistory and future values of the traffic in order to achieve the maximum of its operation efficiency. The paper presents an adaptive linear predictor of the fractal network traffic and compares it to the simple autoregressive predictor. According to our simulation results, the autoregressive shaper grants significantly smoother output while the adaptive predictor grants significantly lower packet loss ratio.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present paper shaping algorithms development is considered. Most attention is paid to shaping algorithms based on network traffic prediction. Estimates of prediction-based shapers efficiency for different forecasting techniques are obtained. It is shown that a shaping algorithm should take into account both the prehistory and future values of the traffic in order to achieve the maximum of its operation efficiency. The paper presents an adaptive linear predictor of the fractal network traffic and compares it to the simple autoregressive predictor. According to our simulation results, the autoregressive shaper grants significantly smoother output while the adaptive predictor grants significantly lower packet loss ratio.
基于多项式趋势自相似时间序列预测的网络流量整形
本文讨论了整形算法的发展。基于网络流量预测的整形算法受到了广泛的关注。对不同预测技术下基于预测的整形器效率进行了估计。研究表明,整形算法必须同时考虑流量的过去值和未来值,才能使整形算法的运算效率达到最大。本文提出了一种分形网络流量的自适应线性预测器,并与简单的自回归预测器进行了比较。根据我们的模拟结果,自回归整形器提供了更平滑的输出,而自适应预测器提供了更低的丢包率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信