Application of Neural Network in Parameters Optimization of Permanent Magnet Synchronous Motor Model Predictive Control

Licheng Liao, Ling Feng, Yuliang Wen, Kaibing Du
{"title":"Application of Neural Network in Parameters Optimization of Permanent Magnet Synchronous Motor Model Predictive Control","authors":"Licheng Liao, Ling Feng, Yuliang Wen, Kaibing Du","doi":"10.1109/PRECEDE51386.2021.9681029","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to realize the parameters optimization of permanent magnet synchronous motor (PMSM) model predictive control (MPC) using neural network (NN). The first step of the method is to use different parameter combinations to perform multiple simulations (or experiments) of the MPC algorithm, and extract the key performance indicators (such as average switching frequency of the inverter, total harmonic distortion, etc.) of the system. Then, train the NN with the acquired data. The trained NN performs as a substitute for the simulation model, and the performance indicators of the system can be estimated quickly and accurately corresponding to arbitrary parameter combinations. Therefore, user can define any fitness function composed of performance indicators, and the optimal parameter combination minimizing the fitness function can be found automatically. Finally, the parameter combinations designed for three different fitness function were verified by simulation, and the predicted performance indicators turned out to be close to the simulation model, with error less than 4%.","PeriodicalId":161011,"journal":{"name":"2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRECEDE51386.2021.9681029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a method to realize the parameters optimization of permanent magnet synchronous motor (PMSM) model predictive control (MPC) using neural network (NN). The first step of the method is to use different parameter combinations to perform multiple simulations (or experiments) of the MPC algorithm, and extract the key performance indicators (such as average switching frequency of the inverter, total harmonic distortion, etc.) of the system. Then, train the NN with the acquired data. The trained NN performs as a substitute for the simulation model, and the performance indicators of the system can be estimated quickly and accurately corresponding to arbitrary parameter combinations. Therefore, user can define any fitness function composed of performance indicators, and the optimal parameter combination minimizing the fitness function can be found automatically. Finally, the parameter combinations designed for three different fitness function were verified by simulation, and the predicted performance indicators turned out to be close to the simulation model, with error less than 4%.
神经网络在永磁同步电机模型预测控制参数优化中的应用
提出了一种利用神经网络实现永磁同步电机模型预测控制(MPC)参数优化的方法。该方法的第一步是使用不同的参数组合对MPC算法进行多次仿真(或实验),并提取系统的关键性能指标(如逆变器的平均开关频率、总谐波失真等)。然后,用采集到的数据对神经网络进行训练。训练后的神经网络可以代替仿真模型,在任意参数组合下可以快速准确地估计系统的性能指标。因此,用户可以定义由性能指标组成的任意适应度函数,并自动找到使适应度函数最小的最优参数组合。最后,对三种不同适应度函数设计的参数组合进行仿真验证,预测的性能指标与仿真模型接近,误差小于4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信