The ROC-Boost Design Algorithm for Asymmetric Classification

Guido Cesare, R. Manduchi
{"title":"The ROC-Boost Design Algorithm for Asymmetric Classification","authors":"Guido Cesare, R. Manduchi","doi":"10.1109/ICMLA.2011.142","DOIUrl":null,"url":null,"abstract":"In many situations (e.g., cascaded classification), it is desirable to design a classifier with precise constraints on its detection rate or on its false positive rate. We introduce ROC Boost, a modification of the Ada Boost design algorithm that produces asymmetric classifiers with guaranteed detection rate and low false positive rates. Tested in a visual text detection task, ROC-Boost was shown to perform competitively against other popular algorithms.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many situations (e.g., cascaded classification), it is desirable to design a classifier with precise constraints on its detection rate or on its false positive rate. We introduce ROC Boost, a modification of the Ada Boost design algorithm that produces asymmetric classifiers with guaranteed detection rate and low false positive rates. Tested in a visual text detection task, ROC-Boost was shown to perform competitively against other popular algorithms.
非对称分类的ROC-Boost设计算法
在许多情况下(例如,级联分类),我们希望设计一个分类器,对其检测率或假阳性率有精确的约束。我们介绍了ROC Boost,它是Ada Boost设计算法的一种改进,可以产生具有保证检测率和低假阳性率的非对称分类器。在视觉文本检测任务中进行测试,ROC-Boost被证明可以与其他流行的算法进行竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信