I. Cutcutache, T. Dang, W. Leong, Shanshan Liu, K. D. Nguyen, Linh T. X. Phan, J. Sim, Z. Sun, T. Tok, Lin Xu, F. Tay, W. Wong
{"title":"BSN Simulator: Optimizing Application Using System Level Simulation","authors":"I. Cutcutache, T. Dang, W. Leong, Shanshan Liu, K. D. Nguyen, Linh T. X. Phan, J. Sim, Z. Sun, T. Tok, Lin Xu, F. Tay, W. Wong","doi":"10.1109/BSN.2009.22","DOIUrl":null,"url":null,"abstract":"A biomonitoring application running on wireless BAN has stringent timing and energy requirements. Developing such applications therefore presents unique challenges in both hardware and software designs. This paper shows how we successfully apply our full-system simulator to a MEMSWear-Biomonitoring application. The simulation results, together with a set of investigative guidelines, enable us to identify and overcome performance bottlenecks. Our simulator is able to obtain timing and energy measurements for each function in the program as well as for each module in the hardware. Without such detail and accurate information, we would not be able to identify the reason for the low performance in the original application.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A biomonitoring application running on wireless BAN has stringent timing and energy requirements. Developing such applications therefore presents unique challenges in both hardware and software designs. This paper shows how we successfully apply our full-system simulator to a MEMSWear-Biomonitoring application. The simulation results, together with a set of investigative guidelines, enable us to identify and overcome performance bottlenecks. Our simulator is able to obtain timing and energy measurements for each function in the program as well as for each module in the hardware. Without such detail and accurate information, we would not be able to identify the reason for the low performance in the original application.