The BINGO! focused crawler: from bookmarks to archetypes

Sergej Sizov, Stefan Siersdorfer, M. Theobald, G. Weikum
{"title":"The BINGO! focused crawler: from bookmarks to archetypes","authors":"Sergej Sizov, Stefan Siersdorfer, M. Theobald, G. Weikum","doi":"10.1109/ICDE.2002.994746","DOIUrl":null,"url":null,"abstract":"The BINGO! system implements an approach to focused crawling that aims to overcome the limitations of the initial training data. To this end, BINGO! identifies, among the crawled and positively classified documents of a topic, characteristic \"archetypes\" and uses them for periodically re-training the classifier; this way the crawler is dynamically adapted based on the most significant documents seen so far. Two kinds of archetypes are considered: good authorities as determined by employing Kleinberg's link analysis algorithm, and documents that have been automatically classified with high confidence using a linear SVM classifier.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The BINGO! system implements an approach to focused crawling that aims to overcome the limitations of the initial training data. To this end, BINGO! identifies, among the crawled and positively classified documents of a topic, characteristic "archetypes" and uses them for periodically re-training the classifier; this way the crawler is dynamically adapted based on the most significant documents seen so far. Two kinds of archetypes are considered: good authorities as determined by employing Kleinberg's link analysis algorithm, and documents that have been automatically classified with high confidence using a linear SVM classifier.
宾果!聚焦爬虫:从书签到原型
宾果!系统实现了一种聚焦爬行的方法,旨在克服初始训练数据的局限性。为此,答对了!在抓取和积极分类的主题文档中识别特征“原型”,并使用它们定期重新训练分类器;通过这种方式,爬虫可以根据迄今为止看到的最重要的文档进行动态调整。本文考虑了两种原型:采用Kleinberg链接分析算法确定的良好权威,以及使用线性支持向量机分类器以高置信度自动分类的文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信