{"title":"Multiobjective control systems design by genetic algorithms","authors":"Tung-Kuan Liu, T. Ishihara, H. Inooka","doi":"10.1109/SICE.1995.526959","DOIUrl":null,"url":null,"abstract":"For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.