Multiobjective control systems design by genetic algorithms

Tung-Kuan Liu, T. Ishihara, H. Inooka
{"title":"Multiobjective control systems design by genetic algorithms","authors":"Tung-Kuan Liu, T. Ishihara, H. Inooka","doi":"10.1109/SICE.1995.526959","DOIUrl":null,"url":null,"abstract":"For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

For multiobjective control systems design, we use genetic algorithms to find the Pareto optimal set of various control system performance indices. We also propose a modified multiobjective selection scheme and the use of the improved rank-based fitness assignment. By combining multiobjective genetic algorithm (MGA) with the pole-zero placement algorithm which can avoid specified pole-zero cancellations, we construct a MATLAB based software package for the computer-aided control system design (CACSD) system for two degree-of-freedom discrete-time control systems. This CACSD system provides a large freedom in the choice of controller structure and in the design specifications. Effectiveness of the proposed CACSD system is illustrated by a design example where the multiobjective optimization by GA is compared with a goal attainment method in MATLAB OPTIMIZATION TOOLBOX.
基于遗传算法的多目标控制系统设计
对于多目标控制系统设计,采用遗传算法求解控制系统各项性能指标的Pareto最优集。我们还提出了一种改进的多目标选择方案,并使用改进的基于秩的适应度分配。将多目标遗传算法(MGA)与避免特定极点零抵消的极点零放置算法相结合,构建了基于MATLAB的二自由度离散控制系统计算机辅助控制系统设计(CACSD)系统软件包。该系统在控制器结构和设计规范的选择上具有很大的自由度。通过一个设计实例,将遗传算法的多目标优化方法与MATLAB优化工具箱中的目标实现方法进行了比较,说明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信