A Mean Value Model for Unsteady Gas Flows and Heat Transfer in Pipes

Olov Holmer, L. Eriksson
{"title":"A Mean Value Model for Unsteady Gas Flows and Heat Transfer in Pipes","authors":"Olov Holmer, L. Eriksson","doi":"10.3384/ECP18153284","DOIUrl":null,"url":null,"abstract":"Pipes are essential components in engines and therefore models of them are important. For example, the aftertreatment system for modern heavy-duty diesel engines consists of multiple components that are connected using pipes. The temperature in each of these components are important when determining the efficiency of the aftertreatment system and therefore models that accurately describe the temperature in the pipes between the components are important. Here, a dynamic pipe model that combines the adiabatic model of a control volume and that of a stationary one-dimensional flow with heat transfer in a pipe is developed and validated. The resulting model is a quasi-dimensional lumped parameter mean value model containing states for the temperature and pressure of the gas inside the pipe and the temperature of the pipe wall. The model uses the states and convective heat transfer models to calculate pressure at the inlet and outlet as well as temperature at the outlet, in a way that is physically correct under certain conditions. To validate the physical behavior of the model a detailed one-dimensional model is used, and to validate the practical applicability and accuracy of the model data from a passenger car gasoline engine is used to parameterize and validate the model.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP18153284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pipes are essential components in engines and therefore models of them are important. For example, the aftertreatment system for modern heavy-duty diesel engines consists of multiple components that are connected using pipes. The temperature in each of these components are important when determining the efficiency of the aftertreatment system and therefore models that accurately describe the temperature in the pipes between the components are important. Here, a dynamic pipe model that combines the adiabatic model of a control volume and that of a stationary one-dimensional flow with heat transfer in a pipe is developed and validated. The resulting model is a quasi-dimensional lumped parameter mean value model containing states for the temperature and pressure of the gas inside the pipe and the temperature of the pipe wall. The model uses the states and convective heat transfer models to calculate pressure at the inlet and outlet as well as temperature at the outlet, in a way that is physically correct under certain conditions. To validate the physical behavior of the model a detailed one-dimensional model is used, and to validate the practical applicability and accuracy of the model data from a passenger car gasoline engine is used to parameterize and validate the model.
管道内非定常气体流动与换热的均值模型
管道是发动机的基本部件,因此其模型非常重要。例如,现代重型柴油发动机的后处理系统由多个部件组成,这些部件通过管道连接。在确定后处理系统的效率时,每个组件的温度都很重要,因此准确描述组件之间管道温度的模型很重要。本文建立并验证了一种结合了控制体积的绝热模型和管内传热的一维静态流动模型的动态管道模型。所得模型是一个准维集总参数均值模型,包含了管内气体的温度、压力和管壁温度的状态。该模型使用状态和对流传热模型来计算入口和出口的压力以及出口的温度,在一定条件下以物理正确的方式计算。为了验证模型的物理行为,采用了详细的一维模型;为了验证模型的实用性和准确性,采用了乘用车汽油机数据对模型进行参数化和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信