Predicting Research that will be Cited in Policy Documents

B. Kale, Harish Varma Siravuri, Hamed Alhoori, M. Papka
{"title":"Predicting Research that will be Cited in Policy Documents","authors":"B. Kale, Harish Varma Siravuri, Hamed Alhoori, M. Papka","doi":"10.1145/3091478.3098865","DOIUrl":null,"url":null,"abstract":"Scientific publications and other genres of research output are increasingly being cited in policy documents. Citations in documents of this nature could be considered a critical indicator of the significance and societal impact of the research output. In this study, we built classification models that predict whether a particular research work is likely to be cited in a public policy document based on the attention it received online, primarily on social media platforms. We evaluated the classifiers based on their accuracy, precision, and recall values. We found that Random Forest and Multinomial Naive Bayes classifiers performed better overall.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3098865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Scientific publications and other genres of research output are increasingly being cited in policy documents. Citations in documents of this nature could be considered a critical indicator of the significance and societal impact of the research output. In this study, we built classification models that predict whether a particular research work is likely to be cited in a public policy document based on the attention it received online, primarily on social media platforms. We evaluated the classifiers based on their accuracy, precision, and recall values. We found that Random Forest and Multinomial Naive Bayes classifiers performed better overall.
预测将在政策文件中引用的研究
政策文件越来越多地引用科学出版物和其他类型的研究成果。这种性质的文件中的引用可以被视为研究成果的重要性和社会影响的关键指标。在这项研究中,我们建立了分类模型,根据一项特定的研究工作在网上(主要是在社交媒体平台上)受到的关注,预测它是否有可能在公共政策文件中被引用。我们根据分类器的准确度、精密度和召回值来评估分类器。我们发现随机森林和多项朴素贝叶斯分类器总体上表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信