Peer review in online forums: Classifying feedback-sentiment

G. Harris, A. Panangadan, V. Prasanna
{"title":"Peer review in online forums: Classifying feedback-sentiment","authors":"G. Harris, A. Panangadan, V. Prasanna","doi":"10.1109/IRI.2014.7051947","DOIUrl":null,"url":null,"abstract":"Replies posted in technical online forums often contain feedback to the author of the parent comment in the form of agreement, doubt, gratitude, contradiction, etc. We call this feedback-sentiment. Inference of feedback-sentiment has application in expert finding, fact validation, and answer validation. To study feedback-sentiment, we use nearly 25 million comments from a popular discussion forum (Slash-dot, org), spanning over 10 years. We propose and test a heuristic that feedback-sentiment most commonly appears in the first sentence of a forum reply. We introduce a novel interactive decision tree system that allows us to train a classifier using principles from active learning. We classify individual reply sentences as positive, negative, or neutral, and then test the accuracy of our classifier against labels provided by human annotators (using Amazon's Mechanical Turk). We show how our classifier outperforms three general-purpose sentiment classifiers for the task of finding feedback-sentiment.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Replies posted in technical online forums often contain feedback to the author of the parent comment in the form of agreement, doubt, gratitude, contradiction, etc. We call this feedback-sentiment. Inference of feedback-sentiment has application in expert finding, fact validation, and answer validation. To study feedback-sentiment, we use nearly 25 million comments from a popular discussion forum (Slash-dot, org), spanning over 10 years. We propose and test a heuristic that feedback-sentiment most commonly appears in the first sentence of a forum reply. We introduce a novel interactive decision tree system that allows us to train a classifier using principles from active learning. We classify individual reply sentences as positive, negative, or neutral, and then test the accuracy of our classifier against labels provided by human annotators (using Amazon's Mechanical Turk). We show how our classifier outperforms three general-purpose sentiment classifiers for the task of finding feedback-sentiment.
在线论坛的同行评议:对反馈情绪的分类
技术论坛上的回复通常包含对家长评论作者的反馈,形式有同意、怀疑、感激、矛盾等。我们称之为反馈情绪。反馈情感推理在专家发现、事实验证、答案验证等方面都有应用。为了研究反馈情绪,我们使用了一个流行论坛(Slash-dot, org)上近2500万条评论,时间跨度超过10年。我们提出并测试了一个启发式,即反馈情绪最常出现在论坛回复的第一句话中。我们介绍了一种新的交互式决策树系统,它允许我们使用主动学习的原理来训练分类器。我们将单个回复句子分类为肯定、否定或中立,然后根据人类注释者(使用亚马逊的Mechanical Turk)提供的标签测试分类器的准确性。我们展示了我们的分类器如何在寻找反馈情绪的任务上优于三种通用情感分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信