Power minimization of functional units by partially guarded computation

Junghwan Choi, Jinhwan Jeon, Kiyoung Choi
{"title":"Power minimization of functional units by partially guarded computation","authors":"Junghwan Choi, Jinhwan Jeon, Kiyoung Choi","doi":"10.1109/LPE.2000.155266","DOIUrl":null,"url":null,"abstract":"This paper deals with power minimization problem for data-dominated applications based on a novel concept called partially guarded computation. We divide a functional unit into two parts: MSP (Most Significant Part) and LSP (Least Significant Part) and allow the functional unit to perform only the LSP computation if the range of output data can be covered by LSP. We dynamically disable MSP computation to remove unnecessary transitions thereby reducing power consumption. We also propose a systematic approach for determining optimal location of the boundary between the two parts during high-level synthesis. Experimental results show about 10/spl sim/44% power reduction with about 30/spl sim/36% area overhead and less than 3% delay overhead in functional units.","PeriodicalId":188020,"journal":{"name":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2000.155266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This paper deals with power minimization problem for data-dominated applications based on a novel concept called partially guarded computation. We divide a functional unit into two parts: MSP (Most Significant Part) and LSP (Least Significant Part) and allow the functional unit to perform only the LSP computation if the range of output data can be covered by LSP. We dynamically disable MSP computation to remove unnecessary transitions thereby reducing power consumption. We also propose a systematic approach for determining optimal location of the boundary between the two parts during high-level synthesis. Experimental results show about 10/spl sim/44% power reduction with about 30/spl sim/36% area overhead and less than 3% delay overhead in functional units.
用部分保护计算实现功能单元的功率最小化
本文基于部分保护计算的新概念研究了数据主导应用的功耗最小化问题。我们将功能单元分为MSP (Most Significant Part)和LSP (Least Significant Part)两部分,如果输出的数据范围能够被LSP覆盖,则功能单元只进行LSP计算。我们动态禁用MSP计算,以消除不必要的转换,从而降低功耗。我们还提出了一种在高阶合成过程中确定两部分边界最佳位置的系统方法。实验结果表明,在功能单元中,功耗降低约10/spl sim/44%,面积开销约30/spl sim/36%,延迟开销小于3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信