Comparative Evaluation of Different Emulators for Cardiac Mechanics

D. Dalton, Alan Lazarus, D. Husmeier
{"title":"Comparative Evaluation of Different Emulators for Cardiac Mechanics","authors":"D. Dalton, Alan Lazarus, D. Husmeier","doi":"10.11159/icsta20.126","DOIUrl":null,"url":null,"abstract":"This paper outlines a comparison of different emulation based approaches to the task of parameter inference in a biomechanical \nmodel of the left ventricle of the heart, where the emulation models can account for variations in left ventricle geometry. Models \nconsidered include Gaussian processes, neural networks and random forests. We are able to achieve accurate parameter estimation for two \nof the model parameters, while the extension of statistical emulation to the multi geometry case allows us to observe identifiability issues \nin some of the model parameters. This was not observed in our previous single geometry emulation studies. Overall, this study shows the \nability to generalize the single geometry emulation strategy to multiple geometries, pushing us closer towards in clinic decision support \nsystems.","PeriodicalId":302827,"journal":{"name":"Proceedings of the 2nd International Conference on Statistics: Theory and Applications","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta20.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper outlines a comparison of different emulation based approaches to the task of parameter inference in a biomechanical model of the left ventricle of the heart, where the emulation models can account for variations in left ventricle geometry. Models considered include Gaussian processes, neural networks and random forests. We are able to achieve accurate parameter estimation for two of the model parameters, while the extension of statistical emulation to the multi geometry case allows us to observe identifiability issues in some of the model parameters. This was not observed in our previous single geometry emulation studies. Overall, this study shows the ability to generalize the single geometry emulation strategy to multiple geometries, pushing us closer towards in clinic decision support systems.
心脏力学仿真器的比较评价
本文概述了在心脏左心室生物力学模型中参数推断任务的不同仿真方法的比较,其中仿真模型可以解释左心室几何形状的变化。考虑的模型包括高斯过程、神经网络和随机森林。我们能够对两个模型参数实现准确的参数估计,而将统计仿真扩展到多几何情况使我们能够观察到一些模型参数的可识别性问题。这在我们以前的单一几何模拟研究中没有观察到。总的来说,这项研究显示了将单一几何模拟策略推广到多种几何的能力,推动我们更接近临床决策支持系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信