PERAMALAN PRODUKSI KARET INDONESIA MENGGUNAKAN FUZZY TIME SERIES DUA FAKTOR ORDE TINGGI RELASI PANJANG BERDASARKAN RASIO INTERVAL

Etna Vianita, Heru Tjahjana, Titi Udjiani
{"title":"PERAMALAN PRODUKSI KARET INDONESIA MENGGUNAKAN FUZZY TIME SERIES DUA FAKTOR ORDE TINGGI RELASI PANJANG BERDASARKAN RASIO INTERVAL","authors":"Etna Vianita, Heru Tjahjana, Titi Udjiani","doi":"10.19184/mims.v22i1.30414","DOIUrl":null,"url":null,"abstract":"The fuzzy time series method for forecasting continues to develop over time. This research discusses fuzzy time series, which considers two factors for high order using interval partitioning based on interval ratio with long relation construction for getting different accuracy in forecasting between combination method and existing method. The first step is the formation of the universe of speech. Second, divide the universe of discourse into several intervals using interval ratios. Third, fuzzification. Fourth, build fuzzy logic relations and fuzzy logic relation groups, and fifth, defuzzification. The previous methods would be compared with the fuzzy logic relation construction result. The simulation used Indonesian rubber production data for 2000-2020. The results and errors were tested using the average forecasting error rate (AFER). AFER value of the forecasting method is 1.863% obtained.Keywords: Forecasting, fuzzy time series, long relationMSC2020: 62M10, 62M20, 62M86, 03E72","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v22i1.30414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fuzzy time series method for forecasting continues to develop over time. This research discusses fuzzy time series, which considers two factors for high order using interval partitioning based on interval ratio with long relation construction for getting different accuracy in forecasting between combination method and existing method. The first step is the formation of the universe of speech. Second, divide the universe of discourse into several intervals using interval ratios. Third, fuzzification. Fourth, build fuzzy logic relations and fuzzy logic relation groups, and fifth, defuzzification. The previous methods would be compared with the fuzzy logic relation construction result. The simulation used Indonesian rubber production data for 2000-2020. The results and errors were tested using the average forecasting error rate (AFER). AFER value of the forecasting method is 1.863% obtained.Keywords: Forecasting, fuzzy time series, long relationMSC2020: 62M10, 62M20, 62M86, 03E72
印度尼西亚橡胶生产采用了模糊时间系列两种基于区间孔径的长期兼容性因素
模糊时间序列预测方法随着时间的推移而不断发展。本文对模糊时间序列进行了研究,利用基于区间比率的区间划分和长关系构造来考虑两个高阶因素,从而使组合方法与现有方法的预测精度有所不同。第一步是语言世界的形成。其次,使用区间比率将语篇划分为若干个区间。第三,模糊化。第四,建立模糊逻辑关系和模糊逻辑关系群;第五,去模糊化。将以往的方法与模糊逻辑关系的构造结果进行比较。模拟使用了印度尼西亚2000-2020年的橡胶生产数据。采用平均预测错误率(AFER)对结果和误差进行检验。预测方法的after值为1.863%。关键词:预测,模糊时间序列,长关系msc2020: 62M10, 62M20, 62M86, 03E72
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信