Kinematic Structure Estimation of Arbitrary Articulated Rigid Objects for Event Cameras

Urbano Miguel Nunes, Y. Demiris
{"title":"Kinematic Structure Estimation of Arbitrary Articulated Rigid Objects for Event Cameras","authors":"Urbano Miguel Nunes, Y. Demiris","doi":"10.1109/icra46639.2022.9812430","DOIUrl":null,"url":null,"abstract":"We propose a novel method that estimates the Kinematic Structure (KS) of arbitrary articulated rigid objects from event-based data. Event cameras are emerging sensors that asynchronously report brightness changes with a time resolution of microseconds, making them suitable candidates for motion-related perception. By assuming that an articulated rigid object is composed of body parts whose shape can be approximately described by a Gaussian distribution, we jointly segment the different parts by combining an adapted Bayesian inference approach and incremental event-based motion estimation. The respective KS is then generated based on the segmented parts and their respective biharmonic distance, which is estimated by building an affinity matrix of points sampled from the estimated Gaussian distributions. The method outperforms frame-based methods in sequences obtained by simulating events from video sequences and achieves a solid performance on new high-speed motions sequences, which frame-based KS estimation methods can not handle.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel method that estimates the Kinematic Structure (KS) of arbitrary articulated rigid objects from event-based data. Event cameras are emerging sensors that asynchronously report brightness changes with a time resolution of microseconds, making them suitable candidates for motion-related perception. By assuming that an articulated rigid object is composed of body parts whose shape can be approximately described by a Gaussian distribution, we jointly segment the different parts by combining an adapted Bayesian inference approach and incremental event-based motion estimation. The respective KS is then generated based on the segmented parts and their respective biharmonic distance, which is estimated by building an affinity matrix of points sampled from the estimated Gaussian distributions. The method outperforms frame-based methods in sequences obtained by simulating events from video sequences and achieves a solid performance on new high-speed motions sequences, which frame-based KS estimation methods can not handle.
事件相机中任意关节刚体的运动结构估计
提出了一种基于事件数据估计任意关节刚体运动结构的新方法。事件相机是一种新兴的传感器,它以微秒的时间分辨率异步报告亮度变化,使其成为运动相关感知的合适人选。假设一个铰接的刚性物体由形状可以用高斯分布近似描述的身体部分组成,我们结合自适应贝叶斯推理方法和基于增量事件的运动估计来共同分割不同的部分。然后根据被分割的部分及其各自的双谐波距离生成各自的KS,该距离通过从估计的高斯分布中采样的点建立亲和矩阵来估计。该方法在通过模拟视频序列获得的序列上优于基于帧的方法,并且在新的高速运动序列上取得了基于帧的KS估计方法无法处理的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信