Ankur Mondal, Athishay Kesan, Andrea Rodrigues, Jossy P. George
{"title":"An Efficient Multi-Modal Classification Approach for Disaster-related Tweets","authors":"Ankur Mondal, Athishay Kesan, Andrea Rodrigues, Jossy P. George","doi":"10.1109/icdcece53908.2022.9792951","DOIUrl":null,"url":null,"abstract":"Owing to the unanticipated and thereby treacherous nature of disasters, it is essential to gather necessary information and data regarding the same on an urgent basis; this helps to get a detailed overview of the situation and helps humanitarian organizations prioritize their tasks. In this paper, \"An Efficient Multi-Modal Classification Approach for Disaster-related Tweets,\" the proposed framework based on Deep Learning to classify disaster-related tweets by analyzing text and image contents. The approach is based on Gated Recurrent Unit (GRU) and GloVe Embedding for text classification and VGG-16 network for image classification. Finally, a combined model is proposed using both text and image modules by the Late Fusion Technique. This portrays that the proposed multi-modal system performs significantly well in classifying disaster-related content.","PeriodicalId":417643,"journal":{"name":"2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdcece53908.2022.9792951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Owing to the unanticipated and thereby treacherous nature of disasters, it is essential to gather necessary information and data regarding the same on an urgent basis; this helps to get a detailed overview of the situation and helps humanitarian organizations prioritize their tasks. In this paper, "An Efficient Multi-Modal Classification Approach for Disaster-related Tweets," the proposed framework based on Deep Learning to classify disaster-related tweets by analyzing text and image contents. The approach is based on Gated Recurrent Unit (GRU) and GloVe Embedding for text classification and VGG-16 network for image classification. Finally, a combined model is proposed using both text and image modules by the Late Fusion Technique. This portrays that the proposed multi-modal system performs significantly well in classifying disaster-related content.