Hyperparameter Tuning and Feature Selection for Improving Flow Instability Detection in Offshore Oil Wells

Bruno Guilherme Carvalho, R. E. V. Vargas, R. M. Salgado, C. J. Munaro, F. M. Varejão
{"title":"Hyperparameter Tuning and Feature Selection for Improving Flow Instability Detection in Offshore Oil Wells","authors":"Bruno Guilherme Carvalho, R. E. V. Vargas, R. M. Salgado, C. J. Munaro, F. M. Varejão","doi":"10.1109/INDIN45523.2021.9557415","DOIUrl":null,"url":null,"abstract":"Flow instability is a class of abnormal operation in subsea oil wells. Applying machine learning models and improving detection and classification performance is decisive to reduce operational costs and downtime. In this paper we evaluate a pipeline of methods in order to increase correct classification rates. Our strategy is defined to avoid the similarity bias and approaches the binary problem in two distinct ways: A) using normal labels as negative and B) using both normal labels and all other kind of defects as negative, leveraging all data in the available dataset. The workflow includes feature extraction, hyperparameter tuning, feature selection with sequential algorithms, hybrid ranking wrapper and also with genetic algorithm. We show that hyperparameter tuning produces minor improvements and due to problem complexity a robust feature selection algorithm is required to deliver higher results.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Flow instability is a class of abnormal operation in subsea oil wells. Applying machine learning models and improving detection and classification performance is decisive to reduce operational costs and downtime. In this paper we evaluate a pipeline of methods in order to increase correct classification rates. Our strategy is defined to avoid the similarity bias and approaches the binary problem in two distinct ways: A) using normal labels as negative and B) using both normal labels and all other kind of defects as negative, leveraging all data in the available dataset. The workflow includes feature extraction, hyperparameter tuning, feature selection with sequential algorithms, hybrid ranking wrapper and also with genetic algorithm. We show that hyperparameter tuning produces minor improvements and due to problem complexity a robust feature selection algorithm is required to deliver higher results.
改进海上油井流动不稳定检测的超参数整定与特征选择
流动失稳是海底油井异常操作的一类。应用机器学习模型并提高检测和分类性能对于降低运营成本和停机时间至关重要。为了提高正确的分类率,我们评估了一系列的方法。我们的策略被定义为避免相似性偏差,并以两种不同的方式处理二元问题:A)使用正常标签为负,B)使用正常标签和所有其他类型的缺陷为负,利用可用数据集中的所有数据。该工作流包括特征提取、超参数调优、序列算法特征选择、混合排序包装和遗传算法。我们表明,超参数调优产生了微小的改进,并且由于问题的复杂性,需要一个鲁棒的特征选择算法来提供更高的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信