Sea-land Segmentation in Polarimetric SAR Images

Ziqian Ma, Rui Zhang, Wei Yang
{"title":"Sea-land Segmentation in Polarimetric SAR Images","authors":"Ziqian Ma, Rui Zhang, Wei Yang","doi":"10.23919/CISS51089.2021.9652256","DOIUrl":null,"url":null,"abstract":"With the development of SAR technology, quad-pol SAR has been utilized for multiple scenarios for its rich polarization information. To verify the potential of quad-pol SAR in the sea-land segmentation assignment, we adopt superpixel, random forest, and UNet neural networks from the perspective of methods. Based on the dataset produced from Gaofen-3 quad-pol SAR images, experimental results show that multi-polarization information can improve the sea-land segmentation accuracy under the same algorithm. Besides, the UNet method has a better performance than superpixel and random forest on both accuracy and time consumption.","PeriodicalId":318218,"journal":{"name":"2021 2nd China International SAR Symposium (CISS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISS51089.2021.9652256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of SAR technology, quad-pol SAR has been utilized for multiple scenarios for its rich polarization information. To verify the potential of quad-pol SAR in the sea-land segmentation assignment, we adopt superpixel, random forest, and UNet neural networks from the perspective of methods. Based on the dataset produced from Gaofen-3 quad-pol SAR images, experimental results show that multi-polarization information can improve the sea-land segmentation accuracy under the same algorithm. Besides, the UNet method has a better performance than superpixel and random forest on both accuracy and time consumption.
极化SAR图像的海陆分割
随着SAR技术的发展,四极化SAR以其丰富的极化信息被广泛应用于多种场景。为了验证四极SAR在海陆分割分配中的潜力,我们从方法上采用了超像素、随机森林和UNet神经网络。基于高分三号四极SAR图像数据集,实验结果表明,在相同算法下,多极化信息可以提高海陆分割精度。此外,UNet方法在准确率和耗时方面都优于超像素和随机森林方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信