Comparative analysis of the scalar point multiplication algorithms in the NIST FIPS 186 elliptic curve cryptography

M. Babenko, A. Tchernykh, A. Redvanov, A. Djurabaev
{"title":"Comparative analysis of the scalar point multiplication algorithms in the NIST FIPS 186 elliptic curve cryptography","authors":"M. Babenko, A. Tchernykh, A. Redvanov, A. Djurabaev","doi":"10.47350/iccs-de.2021.02","DOIUrl":null,"url":null,"abstract":"In today's world, the problem of information security is becoming critical. One of the most common cryptographic approaches is the elliptic curve cryptosystem. However, in elliptic curve arithmetic, the scalar point multiplication is the most expensive compared to the others. In this paper, we analyze the efficiency of the scalar multiplication on elliptic curves comparing Affine, Projective, Jacobian, Jacobi-Chudnovsky, and Modified Jacobian representations of an elliptic curve. For each coordinate system, we compare Fast exponentiation, Nonadjacent form (NAF), and Window methods. We show that the Window method is the best providing lower execution time on considered coordinate systems.","PeriodicalId":210887,"journal":{"name":"International Workshop on Information, Computation, and Control Systems for Distributed Environments","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Information, Computation, and Control Systems for Distributed Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47350/iccs-de.2021.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today's world, the problem of information security is becoming critical. One of the most common cryptographic approaches is the elliptic curve cryptosystem. However, in elliptic curve arithmetic, the scalar point multiplication is the most expensive compared to the others. In this paper, we analyze the efficiency of the scalar multiplication on elliptic curves comparing Affine, Projective, Jacobian, Jacobi-Chudnovsky, and Modified Jacobian representations of an elliptic curve. For each coordinate system, we compare Fast exponentiation, Nonadjacent form (NAF), and Window methods. We show that the Window method is the best providing lower execution time on considered coordinate systems.
NIST FIPS 186椭圆曲线密码中标量点乘法算法的比较分析
在当今世界,信息安全问题变得越来越重要。最常用的密码方法之一是椭圆曲线密码系统。然而,在椭圆曲线算法中,标量点乘法是最昂贵的。本文比较了椭圆曲线的仿射、投影、雅可比矩阵、雅可比-丘得诺夫斯基矩阵和修正雅可比矩阵,分析了椭圆曲线上标量乘法的效率。对于每个坐标系,我们比较了Fast exponentiation、非相邻形式(NAF)和Window方法。我们表明,在考虑的坐标系上,Window方法是提供较低执行时间的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信