Oppositional Particle Swarm Optimization Algorithm and Its Application to Fault Monitor

Haiping Ma, Shengdong Lin, Baogen Jin
{"title":"Oppositional Particle Swarm Optimization Algorithm and Its Application to Fault Monitor","authors":"Haiping Ma, Shengdong Lin, Baogen Jin","doi":"10.1109/CCPR.2009.5344006","DOIUrl":null,"url":null,"abstract":"In order to improve the real time of aircraft engine fault diagnosis, particle swarm optimization (PSO) is applied to select feature parameters of fault monitor. To tackle the slow nature of PSO, an oppositional particle swarm optimization (OPSO) algorithm is presented in this paper. Utilizing the acceleration performance of opposition-based learning (OBL), it employs OBL for population initialization and also for generation updating to accelerate the evolutionary process, improve the searching capability, and shorten the computing time. Also it has some merits including simpleness and easy implement. Through the benchmark functions and feature parameters selection problem, it demonstrates that the proposed algorithm is effective and superior.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to improve the real time of aircraft engine fault diagnosis, particle swarm optimization (PSO) is applied to select feature parameters of fault monitor. To tackle the slow nature of PSO, an oppositional particle swarm optimization (OPSO) algorithm is presented in this paper. Utilizing the acceleration performance of opposition-based learning (OBL), it employs OBL for population initialization and also for generation updating to accelerate the evolutionary process, improve the searching capability, and shorten the computing time. Also it has some merits including simpleness and easy implement. Through the benchmark functions and feature parameters selection problem, it demonstrates that the proposed algorithm is effective and superior.
对立粒子群优化算法及其在故障监测中的应用
为了提高飞机发动机故障诊断的实时性,将粒子群算法应用于故障监测特征参数的选取。针对粒子群优化算法求解速度慢的问题,提出了一种对向粒子群优化算法。利用基于对立学习(OBL)的加速特性,利用OBL进行种群初始化和代更新,加快进化过程,提高搜索能力,缩短计算时间。该方法具有简单、易于实现等优点。通过基准函数和特征参数选择问题,验证了该算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信