Composite Absolute Value and Sign Forecasts

André B.M. Souza
{"title":"Composite Absolute Value and Sign Forecasts","authors":"André B.M. Souza","doi":"10.2139/ssrn.3712897","DOIUrl":null,"url":null,"abstract":"This paper introduces composite absolute value and sign (CAVS) forecasts, a nonlinear framework that combines forecasts of the sign and absolute value of a time series into conditional mean forecasts. In contrast to linear models, the proposed framework allows different predictors to separately impact the sign and absolute value of the target series. Among other results, I show that the conditional mean can be accurately approximated by the product of mean squared error optimal sign and absolute value forecasts. An empirical application using the FRED-MD dataset shows that CAVS forecasts substantially outperform linear forecasts for series that exhibit persistent volatility dynamics, such as output and interest rates.","PeriodicalId":330048,"journal":{"name":"Macroeconomics: Aggregative Models eJournal","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomics: Aggregative Models eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3712897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces composite absolute value and sign (CAVS) forecasts, a nonlinear framework that combines forecasts of the sign and absolute value of a time series into conditional mean forecasts. In contrast to linear models, the proposed framework allows different predictors to separately impact the sign and absolute value of the target series. Among other results, I show that the conditional mean can be accurately approximated by the product of mean squared error optimal sign and absolute value forecasts. An empirical application using the FRED-MD dataset shows that CAVS forecasts substantially outperform linear forecasts for series that exhibit persistent volatility dynamics, such as output and interest rates.
复合绝对值和符号预测
本文介绍了一种将时间序列的符号和绝对值的预测组合成条件均值预测的非线性框架——复合绝对值和符号预测(CAVS)。与线性模型相比,所提出的框架允许不同的预测因子分别影响目标序列的符号和绝对值。在其他结果中,我表明条件均值可以通过均方误差最优符号和绝对值预测的乘积精确地近似。使用FRED-MD数据集的经验应用表明,对于表现出持续波动动态的序列(如产量和利率),CAVS预测的效果明显优于线性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信