Study on Dynamic Water Environmental Capacity of Fenghuangshan Drinking Water Source Area in Three Gorges Reservoir

S. Liu, Q. Zhu, A. Zhai, X. Ding
{"title":"Study on Dynamic Water Environmental Capacity of Fenghuangshan Drinking Water Source Area in Three Gorges Reservoir","authors":"S. Liu, Q. Zhu, A. Zhai, X. Ding","doi":"10.3808/jeil.202100063","DOIUrl":null,"url":null,"abstract":"Research on water environment capacity is an important part of watershed water environment management. Based on the basic theory of water environment capacity, this study obtained and analyzed the dynamic water environment capacity in Fenghuangshan drinking water source area, Three Gorges Reservoir. In this study, eight water indicators were taken as the indicator object, and the dynamic water environment capacity change range from 2012 to 2017 was permanganate index, biochemical oxygen demand, ferrum, ammonia nitrogen, total phosphorus, anionic surfactant, hexavalent chromium and cuprum, in descending order. The the dynamic water environment capacity of anionic surfactant would increase mainly in pre-flood stage and after storage stage and the other indicators would increase mainly in the end of the flood stage and storage stage. Besides, when the difference between inflow and outflow was positive, the dynamic water environment capacity of anionic surfactant would be reduced and other indicators would be increased. Moreover, the results of time-series analysis introduced showed that this method could be used to predict the change trend of dynamic water environment capacity. Overall, the research in this paper could be a new reference for scientists and decision makers in analyzing, predicting and control the change trend of water environment.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jeil.202100063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research on water environment capacity is an important part of watershed water environment management. Based on the basic theory of water environment capacity, this study obtained and analyzed the dynamic water environment capacity in Fenghuangshan drinking water source area, Three Gorges Reservoir. In this study, eight water indicators were taken as the indicator object, and the dynamic water environment capacity change range from 2012 to 2017 was permanganate index, biochemical oxygen demand, ferrum, ammonia nitrogen, total phosphorus, anionic surfactant, hexavalent chromium and cuprum, in descending order. The the dynamic water environment capacity of anionic surfactant would increase mainly in pre-flood stage and after storage stage and the other indicators would increase mainly in the end of the flood stage and storage stage. Besides, when the difference between inflow and outflow was positive, the dynamic water environment capacity of anionic surfactant would be reduced and other indicators would be increased. Moreover, the results of time-series analysis introduced showed that this method could be used to predict the change trend of dynamic water environment capacity. Overall, the research in this paper could be a new reference for scientists and decision makers in analyzing, predicting and control the change trend of water environment.
三峡库区凤凰山饮用水源地动态水环境容量研究
水环境容量研究是流域水环境管理的重要组成部分。基于水环境容量的基本理论,对三峡库区凤凰山饮用水源地动态水环境容量进行了计算和分析。本研究以8项水指标为指标对象,2012 - 2017年水环境动态容量变化幅度由大到小依次为高锰酸盐指数、生化需氧量、铁、氨氮、总磷、阴离子表面活性剂、六价铬、铜。阴离子表面活性剂动态水环境容量的增加主要发生在洪水前期和蓄水后,其他指标的增加主要发生在洪水后期和蓄水后期。此外,当流入和流出差为正值时,阴离子表面活性剂的动态水环境容量会降低,其他指标会增加。时间序列分析结果表明,该方法可用于预测动态水环境容量的变化趋势。总体而言,本文的研究可为科学家和决策者分析、预测和控制水环境变化趋势提供新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信