WebShapes: Network Visualization with 3D Shapes

Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani
{"title":"WebShapes: Network Visualization with 3D Shapes","authors":"Shengmin Jin, Richard Wituszynski, Max Caiello-Gingold, R. Zafarani","doi":"10.1145/3336191.3371867","DOIUrl":null,"url":null,"abstract":"Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Network visualization has played a critical role in graph analysis, as it not only presents a big picture of a network but also helps reveal the structural information of a network. The most popular visual representation of networks is the node-link diagram. However, visualizing a large network with the node-link diagram can be challenging due to the difficulty in obtaining an optimal graph layout. To address this challenge, a recent advancement in network representation: network shape, allows one to compactly represent a network and its subgraphs with the distribution of their embeddings. Inspired by this research, we have designed a web platform WebShapes that enables researchers and practitioners to visualize their network data as customized 3D shapes (http://b.link/webshapes). Furthermore, we provide a case study on real-world networks to explore the sensitivity of network shapes to different graph sampling, embedding, and fitting methods, and we show examples of understanding networks through their network shapes.
WebShapes:具有3D形状的网络可视化
网络可视化在图分析中起着至关重要的作用,因为它不仅能呈现网络的全貌,而且有助于揭示网络的结构信息。最流行的网络可视化表示是节点链接图。然而,由于难以获得最佳的图布局,使用节点链接图可视化大型网络可能具有挑战性。为了应对这一挑战,网络表示的最新进展:网络形状,允许人们用嵌入的分布紧凑地表示网络及其子图。受到这项研究的启发,我们设计了一个网络平台WebShapes,使研究人员和从业者能够将他们的网络数据可视化为定制的3D形状(http://b.link/webshapes)。此外,我们提供了一个现实世界网络的案例研究,以探索网络形状对不同图采样、嵌入和拟合方法的敏感性,并展示了通过网络形状理解网络的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信