FPGA reverse engineering in Vivado design suite based on X-ray project

Hoyoung Yu, Hyung-Min Lee, Youngjoo Shin, Youngmin Kim
{"title":"FPGA reverse engineering in Vivado design suite based on X-ray project","authors":"Hoyoung Yu, Hyung-Min Lee, Youngjoo Shin, Youngmin Kim","doi":"10.1109/ISOCC47750.2019.9078504","DOIUrl":null,"url":null,"abstract":"As FPGA demand grows, interest in FPGA security is also increasing. FPGA Reverse Engineering (RE) in the ISE Design Suite environment has been studied extensively, but FPGA RE in the Vivado Design Suite environment has not been practically studied at present. Particularly, there is no research on Programmable Interconnect Points (PIP). Since a method that correlates bitstream and XDL file is not applicable in Vivado environment, it requires complete analysis of FPGA structure and bitstream. So X-ray project [1] is used for structure analysis. In this paper, we analyze PIP bitstream configuration information based on X-ray project and propose PIP RE method in Vivado Design Suite environment based on it. The proposed method can be extended to full FPGA RE in Vivado Design Suite environment through further studies.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9078504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As FPGA demand grows, interest in FPGA security is also increasing. FPGA Reverse Engineering (RE) in the ISE Design Suite environment has been studied extensively, but FPGA RE in the Vivado Design Suite environment has not been practically studied at present. Particularly, there is no research on Programmable Interconnect Points (PIP). Since a method that correlates bitstream and XDL file is not applicable in Vivado environment, it requires complete analysis of FPGA structure and bitstream. So X-ray project [1] is used for structure analysis. In this paper, we analyze PIP bitstream configuration information based on X-ray project and propose PIP RE method in Vivado Design Suite environment based on it. The proposed method can be extended to full FPGA RE in Vivado Design Suite environment through further studies.
基于x射线项目的FPGA在Vivado设计套件中的逆向工程
随着FPGA需求的增长,人们对FPGA安全性的兴趣也在增加。ISE Design Suite环境下的FPGA逆向工程(FPGA Reverse Engineering, RE)已经得到了广泛的研究,但是在Vivado Design Suite环境下的FPGA逆向工程目前还没有得到实际的研究。特别是对可编程互连点(PIP)的研究较少。由于比特流和XDL文件的关联方法不适用于Vivado环境,因此需要对FPGA结构和比特流进行完整的分析。因此采用x射线工程[1]进行结构分析。本文分析了基于x射线项目的PIP比特流配置信息,并在此基础上提出了Vivado Design Suite环境下的PIP RE方法。通过进一步的研究,可以将该方法扩展到Vivado Design Suite环境下的全FPGA RE中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信