Infer Gene Regulatory Network Based on the Novel Classifiers Fusion

Wei Zhang, Bing-fen Yang, Jiaguo Lv
{"title":"Infer Gene Regulatory Network Based on the Novel Classifiers Fusion","authors":"Wei Zhang, Bing-fen Yang, Jiaguo Lv","doi":"10.14257/IJHIT.2017.10.2.07","DOIUrl":null,"url":null,"abstract":"Reconstruction of gene regulatory network (GRN) from gene expression data is still a big challenge. Inference of gene regulatory network is considered as a binary classification problem. In this paper, we develop a new supervised learning approach based on several classifiers fusion (SLCF) for inference of gene regulatory network. According to the characteristics of classified data, SLCF uses three classification methods: direct classification, minimal distance selection and flexible neural tree, respectively. The data from E.coli network is used to test our method and results reveal that SLCF performs better than classical unsupervised and supervised learning methods.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJHIT.2017.10.2.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstruction of gene regulatory network (GRN) from gene expression data is still a big challenge. Inference of gene regulatory network is considered as a binary classification problem. In this paper, we develop a new supervised learning approach based on several classifiers fusion (SLCF) for inference of gene regulatory network. According to the characteristics of classified data, SLCF uses three classification methods: direct classification, minimal distance selection and flexible neural tree, respectively. The data from E.coli network is used to test our method and results reveal that SLCF performs better than classical unsupervised and supervised learning methods.
基于新型分类器融合的基因调控网络推断
从基因表达数据中重建基因调控网络(GRN)仍然是一个巨大的挑战。基因调控网络的推断被认为是一个二元分类问题。本文提出了一种基于多分类器融合(SLCF)的监督学习方法,用于基因调控网络的推理。根据分类数据的特点,SLCF分别采用直接分类、最小距离选择和柔性神经树三种分类方法。使用大肠杆菌网络的数据对我们的方法进行了测试,结果表明SLCF比经典的无监督和有监督学习方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信