Sevilay Çetin, Merve Başaranbilek, Hilal Er, Emel Bakay, M. Seydibeyoğlu, N. Topaloglu
{"title":"Light-Induced Bactericidal Effect of Wound Dressings Produced from Thermoplastic Polyurethane and Chitosan","authors":"Sevilay Çetin, Merve Başaranbilek, Hilal Er, Emel Bakay, M. Seydibeyoğlu, N. Topaloglu","doi":"10.1109/TIPTEKNO50054.2020.9299288","DOIUrl":null,"url":null,"abstract":"Tissue damage or disruption of tissue continuity is called as wound. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial strain that can cause infection on the wounds, and especially control of the infections plays an important role in the wound healing process. Wound dressings are an alternative method that can be used to shorten wound healing time. At the same time, bacterial infection is tried to be prevented in the wound area by adding antibacterial materials to the contents of the dressing materials. Light applications of certain wavelengths are another method that shows antibacterial effect used in wound infection treatment. In this study, wound dressings were produced by electrospinning method using chitosan (CHT) and thermoplastic polyurethane (TPU) materials. Also, the synergistic antibacterial effects of wound dressings and 808 nm laser light were investigated on Methicillin-resistant Staphylococcus aureus (MRSA). It was observed that the wound dressings produced with TPU and CHT have antibacterial properties and the laser light at 808 nm of wavelength increases the antibacterial efficacy of the dressings. TPU and TPU-CHT wound dressings have a synergistic antibacterial effect when induced with 808 nm laser light. Thus, light induced nanofibers can be an efficient tool to improve the treatments of infected wounds.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"87 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Tissue damage or disruption of tissue continuity is called as wound. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial strain that can cause infection on the wounds, and especially control of the infections plays an important role in the wound healing process. Wound dressings are an alternative method that can be used to shorten wound healing time. At the same time, bacterial infection is tried to be prevented in the wound area by adding antibacterial materials to the contents of the dressing materials. Light applications of certain wavelengths are another method that shows antibacterial effect used in wound infection treatment. In this study, wound dressings were produced by electrospinning method using chitosan (CHT) and thermoplastic polyurethane (TPU) materials. Also, the synergistic antibacterial effects of wound dressings and 808 nm laser light were investigated on Methicillin-resistant Staphylococcus aureus (MRSA). It was observed that the wound dressings produced with TPU and CHT have antibacterial properties and the laser light at 808 nm of wavelength increases the antibacterial efficacy of the dressings. TPU and TPU-CHT wound dressings have a synergistic antibacterial effect when induced with 808 nm laser light. Thus, light induced nanofibers can be an efficient tool to improve the treatments of infected wounds.