{"title":"Shock polars for non-polytropic compressible potential flow","authors":"V. Elling","doi":"10.3934/cpaa.2022032","DOIUrl":null,"url":null,"abstract":"We consider compressible potential flow for general equations of state. Assuming hyperbolicity and convex equation of state, we prove that shock polars have a unique critical point (in each half), as well as a unique sonic point, with critical and strong shocks always on the subsonic side. We also show existence of normal and oblique shocks, as well as monotonicity of density, enthalpy, pressure along each half-polar, with Mach number monotone only along the subsonic part.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider compressible potential flow for general equations of state. Assuming hyperbolicity and convex equation of state, we prove that shock polars have a unique critical point (in each half), as well as a unique sonic point, with critical and strong shocks always on the subsonic side. We also show existence of normal and oblique shocks, as well as monotonicity of density, enthalpy, pressure along each half-polar, with Mach number monotone only along the subsonic part.