The two-dimensional Ising model

E. Opdam
{"title":"The two-dimensional Ising model","authors":"E. Opdam","doi":"10.1142/9789813229242_0004","DOIUrl":null,"url":null,"abstract":"In this thesis the equivalence of the two-dimensional critical classical Ising model in the scaling limit without a magnetic field, the (one-dimensional) critical quantum Ising chain in the scaling limit, the free fermion with a Dirac mass term, theM(3, 4) minimal model is reviewed. It is shown that the affine diagonal coset model of E8 (respectively su(2)) describes the critical one dimensional quantum Ising model sightly perturbed with a magnetic field term (respectively an energy density term) from the critical point. Furthermore, the existence of six integrals of motion is proven in the critical quantum Ising chain perturbed with a small magnetic field term from the critical point, and using these conserved quantities, the existence of eight massive particles and their mass ratios are predicted, following a paper of Zamolodchikov. Title: The two dimensional Ising model Author: Sjabbo Schaveling, sjabboschaveling@student.uva.nl, 10001230 Supervisor: prof. dr. E. M. Opdam, prof. dr. B. Nienhuis Second Examiner: Prof. dr. B. Nienhuis Examination date: Februari 29, 2016 Korteweg-de Vries Institute for Mathematics University of Amsterdam Science Park 105-107, 1098 XG Amsterdam http://kdvi.uva.nl","PeriodicalId":156741,"journal":{"name":"From Quarks to Pions","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"280","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"From Quarks to Pions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813229242_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 280

Abstract

In this thesis the equivalence of the two-dimensional critical classical Ising model in the scaling limit without a magnetic field, the (one-dimensional) critical quantum Ising chain in the scaling limit, the free fermion with a Dirac mass term, theM(3, 4) minimal model is reviewed. It is shown that the affine diagonal coset model of E8 (respectively su(2)) describes the critical one dimensional quantum Ising model sightly perturbed with a magnetic field term (respectively an energy density term) from the critical point. Furthermore, the existence of six integrals of motion is proven in the critical quantum Ising chain perturbed with a small magnetic field term from the critical point, and using these conserved quantities, the existence of eight massive particles and their mass ratios are predicted, following a paper of Zamolodchikov. Title: The two dimensional Ising model Author: Sjabbo Schaveling, sjabboschaveling@student.uva.nl, 10001230 Supervisor: prof. dr. E. M. Opdam, prof. dr. B. Nienhuis Second Examiner: Prof. dr. B. Nienhuis Examination date: Februari 29, 2016 Korteweg-de Vries Institute for Mathematics University of Amsterdam Science Park 105-107, 1098 XG Amsterdam http://kdvi.uva.nl
二维伊辛模型
本文综述了二维临界经典Ising模型在无磁场标度极限下的等价性,一维临界量子Ising链在标度极限下的等价性,带Dirac质量项的自由费米子,theM(3,4)极小模型。证明了E8(分别为su(2))的仿射对角协集模型描述了从临界点开始被磁场项(分别为能量密度项)轻微扰动的临界一维量子Ising模型。进一步证明了临界点处受小磁场项扰动的临界量子伊辛链存在6个运动积分,并利用这些守恒量,预测了8个大质量粒子的存在及其质量比。题目:二维Ising模型作者:Sjabbo Schaveling, sjabboschaveling@student.uva.nl, 10001230导师:prof. E. M. Opdam, prof. B. Nienhuis第二考官:prof. B. Nienhuis考试日期:2016年2月29日阿姆斯特丹大学科学园区105-107,1098 XG阿姆斯特丹http://kdvi.uva.nl
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信