A Deep Learning Approach to Selecting Representative Time Steps for Time-Varying Multivariate Data

William P. Porter, Yunhao Xing, Blaise R. von Ohlen, Jun Han, Chaoli Wang
{"title":"A Deep Learning Approach to Selecting Representative Time Steps for Time-Varying Multivariate Data","authors":"William P. Porter, Yunhao Xing, Blaise R. von Ohlen, Jun Han, Chaoli Wang","doi":"10.1109/VISUAL.2019.8933759","DOIUrl":null,"url":null,"abstract":"We present a deep learning approach that selects representative time steps from a given time-varying multivariate data set. Our solution leverages an autoencoder that implicitly learns feature descriptors of each individual volume in a latent space. These feature descriptors are used to reconstruct respective volumes for error estimation during network training. We then perform dimensionality reduction of these feature descriptors and select representative time steps in the projected space. Unlike previous approaches, our solution can handle time-varying multivariate data sets where the multivariate features can be learned using a multichannel input to the autoencoder. We demonstrate the effectiveness of our approach using several time-varying multivariate data sets and compare our selection results with those generated using an information-theoretic approach.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We present a deep learning approach that selects representative time steps from a given time-varying multivariate data set. Our solution leverages an autoencoder that implicitly learns feature descriptors of each individual volume in a latent space. These feature descriptors are used to reconstruct respective volumes for error estimation during network training. We then perform dimensionality reduction of these feature descriptors and select representative time steps in the projected space. Unlike previous approaches, our solution can handle time-varying multivariate data sets where the multivariate features can be learned using a multichannel input to the autoencoder. We demonstrate the effectiveness of our approach using several time-varying multivariate data sets and compare our selection results with those generated using an information-theoretic approach.
时变多元数据选择代表性时间步长的深度学习方法
我们提出了一种深度学习方法,从给定的时变多元数据集中选择具有代表性的时间步长。我们的解决方案利用了一个自动编码器,该编码器隐式地学习潜在空间中每个单独体积的特征描述符。在网络训练过程中,这些特征描述符用于重建相应的卷以进行误差估计。然后,我们对这些特征描述符进行降维,并在投影空间中选择具有代表性的时间步长。与以前的方法不同,我们的解决方案可以处理时变的多变量数据集,其中多变量特征可以使用多通道输入到自编码器中来学习。我们使用几个时变多元数据集证明了我们方法的有效性,并将我们的选择结果与使用信息论方法生成的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信