Finite-Horizon H2/H∞ control for discrete-time stochastic systems with multiple decision makers

H. Mukaidani, Toru Yamamoto
{"title":"Finite-Horizon H2/H∞ control for discrete-time stochastic systems with multiple decision makers","authors":"H. Mukaidani, Toru Yamamoto","doi":"10.1109/ACC.2015.7170944","DOIUrl":null,"url":null,"abstract":"In this paper, finite-horizon H2/H∞ control problems with multiple decision makers are investigated. In contrast to the existing result in Zhang et al., (2007), here we consider multiple controls. First, a necessary condition for the existence of H2/H∞ control is established by using a cross-coupled stochastic backward difference Riccati equations (CSBDREs). In particular, both Pareto and Nash strategy sets are established, and it is further shown that the Pareto strategy set is equivalent to the linear quadratic (LQ) game as the cooperative strategy. Lastly, a simple numerical example is given to show the validity and potential of the proposed method.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7170944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, finite-horizon H2/H∞ control problems with multiple decision makers are investigated. In contrast to the existing result in Zhang et al., (2007), here we consider multiple controls. First, a necessary condition for the existence of H2/H∞ control is established by using a cross-coupled stochastic backward difference Riccati equations (CSBDREs). In particular, both Pareto and Nash strategy sets are established, and it is further shown that the Pareto strategy set is equivalent to the linear quadratic (LQ) game as the cooperative strategy. Lastly, a simple numerical example is given to show the validity and potential of the proposed method.
多决策者离散随机系统的有限视界H2/H∞控制
研究了具有多决策者的有限视界H2/H∞控制问题。与Zhang等人(2007)的现有结果相反,这里我们考虑多个控制。首先,利用交叉耦合随机后向差分Riccati方程(CSBDREs)建立了H2/H∞控制存在的必要条件。特别建立了帕累托和纳什策略集,并进一步证明了帕累托策略集等同于线性二次(LQ)博弈作为合作策略。最后,通过一个简单的算例验证了该方法的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信