Parallel Retrograde Analysis on a Distributed System

H. Bal, L. Allis
{"title":"Parallel Retrograde Analysis on a Distributed System","authors":"H. Bal, L. Allis","doi":"10.1145/224170.224470","DOIUrl":null,"url":null,"abstract":"Retrograde Analysis (RA) is an AI search technique used to compute endgame databases, which contain optimal solutions for part of the search space of a game. RA has been applied successfully to several games, but its usefulness is restricted by the huge amount of CPU time and internal memory it requires. We present a parallel distributed algorithm for RA that addresses these problems. RA is hard to parallelize efficiently, because the communication overhead potentially is enormous. We show that the overhead can be reduced drastically using message combining. We implemented the algorithm on an Ethernet-based distributed system. For one example game (awari), we have computed a large database in 50 minutes on 64 processors, whereas one machine took 40 hours (a speedup of 48). An even larger database (computed in 20 hours) would have required over 600 MByte of internal memory on a uniprocessor and would compute for many weeks.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Retrograde Analysis (RA) is an AI search technique used to compute endgame databases, which contain optimal solutions for part of the search space of a game. RA has been applied successfully to several games, but its usefulness is restricted by the huge amount of CPU time and internal memory it requires. We present a parallel distributed algorithm for RA that addresses these problems. RA is hard to parallelize efficiently, because the communication overhead potentially is enormous. We show that the overhead can be reduced drastically using message combining. We implemented the algorithm on an Ethernet-based distributed system. For one example game (awari), we have computed a large database in 50 minutes on 64 processors, whereas one machine took 40 hours (a speedup of 48). An even larger database (computed in 20 hours) would have required over 600 MByte of internal memory on a uniprocessor and would compute for many weeks.
分布式系统的并行逆行分析
逆行分析(RA)是一种用于计算终局数据库的AI搜索技术,其中包含游戏部分搜索空间的最佳解决方案。RA已经成功地应用于几款游戏中,但它的实用性受到大量CPU时间和内部内存的限制。我们提出了一种针对RA的并行分布式算法来解决这些问题。RA很难有效地并行化,因为通信开销可能是巨大的。我们展示了使用消息组合可以大大减少开销。我们在一个基于以太网的分布式系统上实现了该算法。以游戏《awari》为例,我们在64个处理器上用50分钟计算了一个大型数据库,而一台机器花了40小时(加速了48小时)。一个更大的数据库(在20小时内计算)在单处理器上需要超过600mbyte的内部内存,并且要计算好几个星期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信