Electromagnetic Wave Absorption Properties of Core-Shell Ni-Based Composites

Biao Zhao, Rui Zhang
{"title":"Electromagnetic Wave Absorption Properties of Core-Shell Ni-Based Composites","authors":"Biao Zhao, Rui Zhang","doi":"10.5772/INTECHOPEN.82301","DOIUrl":null,"url":null,"abstract":"Currently, high efficiency electromagnetic wave absorption plays an important role to keep away from the detection of aircraft by radar and reduce information leakage in various electronic equipment. Among the candidates of electromagnetic absorbers, ferromagnetic Ni materials possess high saturation magnetization and high permeability at high frequency (1–18 GHz), which is widely used to prepare thinner absorbing materials along with strong electromagnetic absorption properties. However, the metallic materials usually have relatively high electrical conductivity, and their permeability decreases rapidly at high frequency thanks to the eddy current losses, which is generally named as skin-depth effect. To address this issue, one effective way is to design core-shell structured Ni based composites combining magnetic cores with dielectric shells. This chapter focuses on the state-of-the-art of the microwave absorption properties of Ni-based core-shell composites, and the related electromagnetic attenuation theory about how to enhance absorption properties is also discussed in detail.","PeriodicalId":247660,"journal":{"name":"Electromagnetic Materials and Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Currently, high efficiency electromagnetic wave absorption plays an important role to keep away from the detection of aircraft by radar and reduce information leakage in various electronic equipment. Among the candidates of electromagnetic absorbers, ferromagnetic Ni materials possess high saturation magnetization and high permeability at high frequency (1–18 GHz), which is widely used to prepare thinner absorbing materials along with strong electromagnetic absorption properties. However, the metallic materials usually have relatively high electrical conductivity, and their permeability decreases rapidly at high frequency thanks to the eddy current losses, which is generally named as skin-depth effect. To address this issue, one effective way is to design core-shell structured Ni based composites combining magnetic cores with dielectric shells. This chapter focuses on the state-of-the-art of the microwave absorption properties of Ni-based core-shell composites, and the related electromagnetic attenuation theory about how to enhance absorption properties is also discussed in detail.
核壳镍基复合材料的电磁波吸收性能
目前,在各种电子设备中,高效的电磁波吸收对于避开雷达对飞机的探测,减少信息泄露起着重要的作用。在电磁吸收体的候选材料中,铁磁镍材料具有高饱和磁化强度和高频(1-18 GHz)高磁导率,被广泛用于制备更薄、电磁吸收性能强的吸波材料。然而,金属材料通常具有较高的导电性,由于涡流损耗,其磁导率在高频下迅速下降,通常称为皮肤深度效应。为了解决这一问题,一种有效的方法是设计磁芯与介电壳相结合的核-壳结构镍基复合材料。本章重点介绍了镍基核壳复合材料微波吸收性能的研究进展,并详细讨论了如何提高吸收性能的相关电磁衰减理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信