Design and Optimization of an Area-efficient SOT-MRAM

Chao Wang, Zhaohao Wang, Bi Wu, Weisheng Zhao
{"title":"Design and Optimization of an Area-efficient SOT-MRAM","authors":"Chao Wang, Zhaohao Wang, Bi Wu, Weisheng Zhao","doi":"10.1109/EDSSC.2019.8754166","DOIUrl":null,"url":null,"abstract":"Spin orbit torque magnetic random access memory (SOT-MRAM) has attracted numerous research interests since it promises to overcome the write speed and energy bottlenecks of the conventional STT-MRAM. However, the cell density of SOT-MRAM is constrained due to more access transistors. In this work, we present a NAND-Like architecture for SOT-MRAM with a single transistor and several diodes, as well as a novel adaptive array design based on the proposed cell structure. Compared with the standard SOTMRAM, the proposed SOT-MRAM achieves significant improvement in the cell density by sharing transistors, meanwhile attains a comparable write speed. The overhead of write energy can be compensated by a well-designed write policy.","PeriodicalId":183887,"journal":{"name":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2019.8754166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spin orbit torque magnetic random access memory (SOT-MRAM) has attracted numerous research interests since it promises to overcome the write speed and energy bottlenecks of the conventional STT-MRAM. However, the cell density of SOT-MRAM is constrained due to more access transistors. In this work, we present a NAND-Like architecture for SOT-MRAM with a single transistor and several diodes, as well as a novel adaptive array design based on the proposed cell structure. Compared with the standard SOTMRAM, the proposed SOT-MRAM achieves significant improvement in the cell density by sharing transistors, meanwhile attains a comparable write speed. The overhead of write energy can be compensated by a well-designed write policy.
面积高效SOT-MRAM的设计与优化
自旋轨道转矩磁随机存取存储器(SOT-MRAM)有望克服传统STT-MRAM的写入速度和能量瓶颈,引起了许多研究的兴趣。然而,由于更多的接入晶体管,SOT-MRAM的单元密度受到限制。在这项工作中,我们提出了一个类似nand的结构,用于SOT-MRAM,具有单个晶体管和几个二极管,以及基于所提出的单元结构的新型自适应阵列设计。与标准SOTMRAM相比,本文提出的SOTMRAM通过共享晶体管实现了单元密度的显著提高,同时实现了相当的写入速度。写能量的开销可以通过设计良好的写策略得到补偿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信