The hybrid Landau–Ginzburg models of Calabi–Yau complete intersections

A. Chiodo, J. Nagel
{"title":"The hybrid Landau–Ginzburg models of\n Calabi–Yau complete intersections","authors":"A. Chiodo, J. Nagel","doi":"10.1090/PSPUM/100/01760","DOIUrl":null,"url":null,"abstract":"We observe that the state space of Landau-Ginzburg isolated singularities is simply a special case of Chen-Ruan orbifold cohomology relative to the generic fibre of the potential. This leads to the definition of the cohomology of hybrid Landau-Ginzburg models and its identification via an explicit isomorphism to the cohomology of Calabi-Yau complete intersections inside weighted projective spaces. The combinatorial method used in the case of hypersurfaces proven by the first named author in collaboration with Ruan is streamlined and generalised after an orbifold version of the Thom isomorphism and of the Tate twist.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We observe that the state space of Landau-Ginzburg isolated singularities is simply a special case of Chen-Ruan orbifold cohomology relative to the generic fibre of the potential. This leads to the definition of the cohomology of hybrid Landau-Ginzburg models and its identification via an explicit isomorphism to the cohomology of Calabi-Yau complete intersections inside weighted projective spaces. The combinatorial method used in the case of hypersurfaces proven by the first named author in collaboration with Ruan is streamlined and generalised after an orbifold version of the Thom isomorphism and of the Tate twist.
Calabi-Yau完全交叉口的Landau-Ginzburg混合模型
我们观察到Landau-Ginzburg孤立奇点的状态空间是相对于势的一般纤维的Chen-Ruan轨道上同的一个特例。这导致了混合Landau-Ginzburg模型的上同构的定义,并通过加权投影空间内Calabi-Yau完全交的上同构的显式同构来识别它。由第一作者与阮合作证明的在超曲面中使用的组合方法是在汤姆同构和泰特扭曲的轨道版本之后被简化和推广的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信