Adaptive sampling and energy-efficient navigation in time-varying flows

Tahiya Salam, D. Kularatne, Eric Forgoston, M. A. Hsieh
{"title":"Adaptive sampling and energy-efficient navigation in time-varying flows","authors":"Tahiya Salam, D. Kularatne, Eric Forgoston, M. A. Hsieh","doi":"10.1049/sbra525e_ch18","DOIUrl":null,"url":null,"abstract":"This chapter presents a strategy to enable a team of mobile robots to adaptively sample and track a dynamic spatiotemporal process. We propose a distributed strategy where robots collect sparse sensor measurements, create a reduced -order model (ROM) of the spatiotemporal process, and use this model to estimate field values for areas without sensor measurements of the dynamic process. The robots then use these estimates of the field, or inferences about the process, to adapt the model and reconfigure their sensing locations. We use this method to obtain an estimate for the underlying fl ow field and use that to plan optimal energy paths for robots to travel between sensing locations. We show that the errors due to the reduced -order modeling scheme are bounded, and we illustrate the application of the proposed solution in simulation and compare it to centralized and global approaches. We then test our approach with physical marine robots sampling a spatially nonuniform time -varying process in a water tank.","PeriodicalId":126968,"journal":{"name":"Autonomous Underwater Vehicles: Design and practice","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Underwater Vehicles: Design and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sbra525e_ch18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This chapter presents a strategy to enable a team of mobile robots to adaptively sample and track a dynamic spatiotemporal process. We propose a distributed strategy where robots collect sparse sensor measurements, create a reduced -order model (ROM) of the spatiotemporal process, and use this model to estimate field values for areas without sensor measurements of the dynamic process. The robots then use these estimates of the field, or inferences about the process, to adapt the model and reconfigure their sensing locations. We use this method to obtain an estimate for the underlying fl ow field and use that to plan optimal energy paths for robots to travel between sensing locations. We show that the errors due to the reduced -order modeling scheme are bounded, and we illustrate the application of the proposed solution in simulation and compare it to centralized and global approaches. We then test our approach with physical marine robots sampling a spatially nonuniform time -varying process in a water tank.
时变流中的自适应采样与节能导航
本章提出了一种使移动机器人团队能够自适应采样和跟踪动态时空过程的策略。我们提出了一种分布式策略,机器人收集稀疏传感器测量值,创建时空过程的降阶模型(ROM),并使用该模型估计没有动态过程传感器测量的区域的场值。然后,机器人使用这些对场地的估计,或对过程的推断,来调整模型并重新配置它们的传感位置。我们使用该方法获得底层流场的估计,并使用该估计来规划机器人在传感位置之间移动的最优能量路径。我们证明了由于降阶建模方案的误差是有界的,我们说明了所提出的解决方案在仿真中的应用,并将其与集中式和全局方法进行了比较。然后,我们用物理海洋机器人在水箱中采样空间非均匀时变过程来测试我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信