Rank varieties and 𝜋-points for elementary supergroup schemes

D. Benson, S. Iyengar, H. Krause, J. Pevtsova
{"title":"Rank varieties and 𝜋-points for elementary supergroup schemes","authors":"D. Benson, S. Iyengar, H. Krause, J. Pevtsova","doi":"10.1090/btran/74","DOIUrl":null,"url":null,"abstract":"<p>We develop a support theory for elementary supergroup schemes, over a field of positive characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than-or-slanted-equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>⩾<!-- ⩾ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p\\geqslant 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, starting with a definition of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\">\n <mml:semantics>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-point generalising cyclic shifted subgroups of Carlson for elementary abelian groups and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\">\n <mml:semantics>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-points of Friedlander and Pevtsova for finite group schemes. These are defined in terms of maps from the graded algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-bracket t comma tau right-bracket slash left-parenthesis t Superscript p Baseline minus tau squared right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>k</mml:mi>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>t</mml:mi>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msup>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">k[t,\\tau ]/(t^p-\\tau ^2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\">\n <mml:semantics>\n <mml:mi>t</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">t</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has even degree and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\">\n <mml:semantics>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has odd degree. The strength of the theory is demonstrated by classifying the parity change invariant localising subcategories of the stable module category of an elementary supergroup scheme.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We develop a support theory for elementary supergroup schemes, over a field of positive characteristic p 3 p\geqslant 3 , starting with a definition of a π \pi -point generalising cyclic shifted subgroups of Carlson for elementary abelian groups and π \pi -points of Friedlander and Pevtsova for finite group schemes. These are defined in terms of maps from the graded algebra k [ t , τ ] / ( t p τ 2 ) k[t,\tau ]/(t^p-\tau ^2) , where t t has even degree and τ \tau has odd degree. The strength of the theory is demonstrated by classifying the parity change invariant localising subcategories of the stable module category of an elementary supergroup scheme.

初等超群方案的秩变异和𝜋-points
我们为初等超群方案开发了一个支持理论,在一个正特征p小于3 p \geqslant 3的域上,从Carlson的初等阿贝尔群的π \pi点广义循环位移子群和Friedlander和Pevtsova的π \pi点的有限群方案的定义开始。这些是根据渐变代数k[t, τ]/(t p−τ 2) k[t, \tau]/(t^p- \tau ^2)的映射定义的,其中t t具有偶数次,τ \tau具有奇数次。通过对一类初等超群格式的稳定模范畴的奇偶变不变定域子范畴进行分类,证明了该理论的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信