{"title":"A multi-objective operational strategy for a utility-scale PV plus energy storage system","authors":"F. Alsaeed, M. Baran","doi":"10.1049/icp.2021.2489","DOIUrl":null,"url":null,"abstract":"Recently, battery energy storage (BES) has emerged as an economically viable technology to be adopted in large-scale photovoltaic (PV) and wind farms to facilitate their integration into the system and increase their economic value. This paper focuses on the determining a proper BES for such a system that will enable the system to respond to the power price variations and thus maximize the BES benefits. Additionally, this paper proposes a detailed dispatching scheme that can handle various operation constraints in order to maximize the BES benefits. This paper also takes into account the factors affecting the degradation of BES during its operation and shows that this is a critical factor in determining economic viability of the BES. A case study for a 300 MW solar power plant is given to illustrate the proposed method and assess the economic viability of the storage for this case. The results show the importance of adopting a detailed BES model to improve the accuracy of the estimated economic benefits.","PeriodicalId":186086,"journal":{"name":"11th Solar & Storage Power System Integration Workshop (SIW 2021)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Solar & Storage Power System Integration Workshop (SIW 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Recently, battery energy storage (BES) has emerged as an economically viable technology to be adopted in large-scale photovoltaic (PV) and wind farms to facilitate their integration into the system and increase their economic value. This paper focuses on the determining a proper BES for such a system that will enable the system to respond to the power price variations and thus maximize the BES benefits. Additionally, this paper proposes a detailed dispatching scheme that can handle various operation constraints in order to maximize the BES benefits. This paper also takes into account the factors affecting the degradation of BES during its operation and shows that this is a critical factor in determining economic viability of the BES. A case study for a 300 MW solar power plant is given to illustrate the proposed method and assess the economic viability of the storage for this case. The results show the importance of adopting a detailed BES model to improve the accuracy of the estimated economic benefits.