Rate Adaptation with Q-Learning in CSMA/CA Wireless Networks

Soohyun Cho
{"title":"Rate Adaptation with Q-Learning in CSMA/CA Wireless Networks","authors":"Soohyun Cho","doi":"10.3745/JIPS.03.0148","DOIUrl":null,"url":null,"abstract":"In this study, we propose a reinforcement learning agent to control the data transmission rates of nodes in carrier sensing multiple access with collision avoidance (CSMA/CA)-based wireless networks. We design a reinforcement learning (RL) agent, based on Q-learning. The agent learns the environment using the timeout events of packets, which are locally available in data sending nodes. The agent selects actions to control the data transmission rates of nodes that adjust the modulation and coding scheme (MCS) levels of the data packets to utilize the available bandwidth in dynamically changing channel conditions effectively. We use the ns3-gym framework to simulate RL and investigate the effects of the parameters of Q-learning on the performance of the RL agent. The simulation results indicate that the proposed RL agent adequately adjusts the MCS levels according to the changes in the network, and achieves a high throughput comparable to those of the existing data transmission rate adaptation schemes such as Minstrel.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.03.0148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, we propose a reinforcement learning agent to control the data transmission rates of nodes in carrier sensing multiple access with collision avoidance (CSMA/CA)-based wireless networks. We design a reinforcement learning (RL) agent, based on Q-learning. The agent learns the environment using the timeout events of packets, which are locally available in data sending nodes. The agent selects actions to control the data transmission rates of nodes that adjust the modulation and coding scheme (MCS) levels of the data packets to utilize the available bandwidth in dynamically changing channel conditions effectively. We use the ns3-gym framework to simulate RL and investigate the effects of the parameters of Q-learning on the performance of the RL agent. The simulation results indicate that the proposed RL agent adequately adjusts the MCS levels according to the changes in the network, and achieves a high throughput comparable to those of the existing data transmission rate adaptation schemes such as Minstrel.
基于q -学习的CSMA/CA无线网络速率自适应
在这项研究中,我们提出了一种强化学习代理来控制基于碰撞避免(CSMA/CA)的载波感知多址无线网络中节点的数据传输速率。我们设计了一个基于q学习的强化学习(RL)智能体。代理使用数据包的超时事件来学习环境,这些事件在数据发送节点中是本地可用的。agent选择控制节点数据传输速率的动作,调整数据包的调制和编码方案(MCS)级别,从而在动态变化的信道条件下有效利用可用带宽。我们使用ns3-gym框架来模拟强化学习,并研究Q-learning参数对强化学习代理性能的影响。仿真结果表明,所提出的RL代理能够根据网络的变化充分调整MCS水平,并达到与Minstrel等现有数据传输速率自适应方案相当的高吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信