Data mining method of evaluating classifier prediction accuracy in retinal data

R. Ramani, B. Lakshmi, S. Jacob
{"title":"Data mining method of evaluating classifier prediction accuracy in retinal data","authors":"R. Ramani, B. Lakshmi, S. Jacob","doi":"10.1109/ICCIC.2012.6510290","DOIUrl":null,"url":null,"abstract":"The research in recent years emphasizes the application of computational techniques in the field of ophthalmology. Diabetic Retinopathy, a retinal disease is the major cause of blindness. Early detection can help in treatment but regular screening for early detection has been a highly labor — and resource-intensive task. Hence automatic detection of the diseases through computational techniques would be a great social cause. In this paper, the classifiers used for the automatic detection of the disease are evaluated using the data mining methods. The prediction accuracy of all the classifiers, evaluated using various evaluation methods is presented. Our results show that a training accuracy of 100% can be achieved by a few classifiers and a prediction accuracy of 76.67%.","PeriodicalId":340238,"journal":{"name":"2012 IEEE International Conference on Computational Intelligence and Computing Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2012.6510290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The research in recent years emphasizes the application of computational techniques in the field of ophthalmology. Diabetic Retinopathy, a retinal disease is the major cause of blindness. Early detection can help in treatment but regular screening for early detection has been a highly labor — and resource-intensive task. Hence automatic detection of the diseases through computational techniques would be a great social cause. In this paper, the classifiers used for the automatic detection of the disease are evaluated using the data mining methods. The prediction accuracy of all the classifiers, evaluated using various evaluation methods is presented. Our results show that a training accuracy of 100% can be achieved by a few classifiers and a prediction accuracy of 76.67%.
评价视网膜数据分类器预测精度的数据挖掘方法
近年来的研究重点是计算技术在眼科领域的应用。糖尿病视网膜病变是一种视网膜疾病,是导致失明的主要原因。早期发现有助于治疗,但定期筛查早期发现是一项高度劳动和资源密集型的任务。因此,通过计算技术自动检测疾病将是一个伟大的社会事业。本文利用数据挖掘方法对用于疾病自动检测的分类器进行了评价。给出了用各种评价方法对分类器的预测精度进行评价。我们的结果表明,使用少量分类器可以达到100%的训练准确率和76.67%的预测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信