Accessing and visualizing scientific spatiotemporal data

D. Katz, Attila Bergou, G. Berriman, Gary L. Block, J. Collier, D. Curkendall, J. Good, L. Husman, J. Jacob, A. Laity, Peggy Li, C. Miller, T. Prince, H. Siegel, Roy Williams
{"title":"Accessing and visualizing scientific spatiotemporal data","authors":"D. Katz, Attila Bergou, G. Berriman, Gary L. Block, J. Collier, D. Curkendall, J. Good, L. Husman, J. Jacob, A. Laity, Peggy Li, C. Miller, T. Prince, H. Siegel, Roy Williams","doi":"10.1109/SSDBM.2004.11","DOIUrl":null,"url":null,"abstract":"This paper discusses work done by JPL's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids. These tools do one or more of the following tasks: visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets. The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc. The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.","PeriodicalId":383615,"journal":{"name":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2004.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper discusses work done by JPL's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids. These tools do one or more of the following tasks: visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets. The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc. The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.
获取和可视化科学时空数据
本文讨论了JPL的并行应用技术小组在帮助科学家通过使用多个计算资源(如并行超级计算机、集群和网格)访问和可视化超大型数据集方面所做的工作。这些工具执行以下一项或多项任务:为本地用户可视化本地数据集,为远程用户可视化本地数据集,以及访问和可视化远程数据集。这些工具用于各种类型的数据,包括遥感图像数据、数字高程模型、天文测量等。本文试图从这些工具中提取一些共同的元素,这些元素可能对其他必须处理类似大型数据集的人有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信