Comparing symbolic representations of cardiac activity to identify patient populations with similar risk profiles

Z. Syed, B. Scirica, C.M. Stultz, J.V. Guttag
{"title":"Comparing symbolic representations of cardiac activity to identify patient populations with similar risk profiles","authors":"Z. Syed, B. Scirica, C.M. Stultz, J.V. Guttag","doi":"10.1109/CIC.2008.4748983","DOIUrl":null,"url":null,"abstract":"This paper proposes electrocardiographic mismatch (ECGM) to quantify differences in the long-term ECG signals for two patients. ECGM compares the symbolic distributions of ECG signals and measures how different patients are electrocardiographically. Using ECGM, we propose a hierarchical clustering scheme that can identify patients in a population with anomalous ECG characteristics. When applied to a population of 686 patients suffering nonST-elevation ACS, our approach was able to identify patients at an increased risk of death and myocardial infarction (HR 2.8, p = 0.003) over a 90 day follow-up period.","PeriodicalId":194782,"journal":{"name":"2008 Computers in Cardiology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2008.4748983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes electrocardiographic mismatch (ECGM) to quantify differences in the long-term ECG signals for two patients. ECGM compares the symbolic distributions of ECG signals and measures how different patients are electrocardiographically. Using ECGM, we propose a hierarchical clustering scheme that can identify patients in a population with anomalous ECG characteristics. When applied to a population of 686 patients suffering nonST-elevation ACS, our approach was able to identify patients at an increased risk of death and myocardial infarction (HR 2.8, p = 0.003) over a 90 day follow-up period.
比较心脏活动的符号表示来识别具有相似风险概况的患者群体
本文提出了心电图失配(ECGM)来量化两名患者长期心电图信号的差异。ECGM比较心电图信号的符号分布,并测量不同患者的心电图。使用ECGM,我们提出了一种分层聚类方案,可以识别具有异常ECG特征的人群中的患者。当应用于686例非st段抬高性ACS患者时,我们的方法能够在90天的随访期内识别出死亡和心肌梗死风险增加的患者(HR 2.8, p = 0.003)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信