Regression based cluster formation for enhancement of lifetime of WSN

K. Joshitha, A. Gangasri
{"title":"Regression based cluster formation for enhancement of lifetime of WSN","authors":"K. Joshitha, A. Gangasri","doi":"10.1109/ICCCT2.2017.7972315","DOIUrl":null,"url":null,"abstract":"The objective of the proposed system is to develop an adaptive iterative linear regression (ILR) based clustering for wireless sensor network. ILR classifies the initial cluster simultaneously in horizontal and vertical patterns to form two sub clusters. Among these two, the best is selected based on similarity index (SI). This selected cluster is taken as reference and the iteration continues until the convergence criteria ‘Delta’ is met. The cluster quality is evaluated using internal and external indices and then compared with existing k-means and hierarchical clustering. The performance indices confirm the supremacy of the ILR clustering.","PeriodicalId":445567,"journal":{"name":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2017.7972315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objective of the proposed system is to develop an adaptive iterative linear regression (ILR) based clustering for wireless sensor network. ILR classifies the initial cluster simultaneously in horizontal and vertical patterns to form two sub clusters. Among these two, the best is selected based on similarity index (SI). This selected cluster is taken as reference and the iteration continues until the convergence criteria ‘Delta’ is met. The cluster quality is evaluated using internal and external indices and then compared with existing k-means and hierarchical clustering. The performance indices confirm the supremacy of the ILR clustering.
基于回归聚类的WSN寿命增强研究
该系统的目标是开发一种基于自适应迭代线性回归(ILR)的无线传感器网络聚类方法。ILR将初始集群按水平和垂直方向同时分类,形成两个子集群。在这两者中,根据相似度指数(SI)选择最佳。这个选择的集群作为参考,迭代继续,直到满足收敛标准“Delta”。使用内部和外部指标评估聚类质量,然后与现有的k-means和分层聚类进行比较。性能指标证实了ILR聚类的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信