{"title":"A Charge Domain P-8T SRAM Compute-In-Memory with Low-Cost DAC/ADC Operation for 4-bit Input Processing","authors":"Joonhyung Kim, Kyeongho Lee, Jongsun Park","doi":"10.1145/3531437.3539718","DOIUrl":null,"url":null,"abstract":"This paper presents a low cost PMOS-based 8T (P-8T) SRAM Compute-In-Memory (CIM) architecture that efficiently per-forms the multiply-accumulate (MAC) operations between 4-bit input activations and 8-bit weights. First, bit-line (BL) charge-sharing technique is employed to design the low-cost and reliable digital-to-analog conversion of 4-bit input activations in the pro-posed SRAM CIM, where the charge domain analog computing provides variation tolerant and linear MAC outputs. The 16 local arrays are also effectively exploited to implement the analog mul-tiplication unit (AMU) that simultaneously produces 16 multipli-cation results between 4-bit input activations and 1-bit weights. For the hardware cost reduction of analog-to-digital converter (ADC) without sacrificing DNN accuracy, hardware aware system simulations are performed to decide the ADC bit-resolutions and the number of activated rows in the proposed CIM macro. In addition, for the ADC operation, the AMU-based reference col-umns are utilized for generating ADC reference voltages, with which low-cost 4-bit coarse-fine flash ADC has been designed. The 256×80 P-8T SRAM CIM macro implementation using 28nm CMOS process shows that the proposed CIM shows the accuracies of 91.46% and 66.67% with CIFAR-10 and CIFAR-100 dataset, respectively, with the energy efficiency of 50.07-TOPS/W.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a low cost PMOS-based 8T (P-8T) SRAM Compute-In-Memory (CIM) architecture that efficiently per-forms the multiply-accumulate (MAC) operations between 4-bit input activations and 8-bit weights. First, bit-line (BL) charge-sharing technique is employed to design the low-cost and reliable digital-to-analog conversion of 4-bit input activations in the pro-posed SRAM CIM, where the charge domain analog computing provides variation tolerant and linear MAC outputs. The 16 local arrays are also effectively exploited to implement the analog mul-tiplication unit (AMU) that simultaneously produces 16 multipli-cation results between 4-bit input activations and 1-bit weights. For the hardware cost reduction of analog-to-digital converter (ADC) without sacrificing DNN accuracy, hardware aware system simulations are performed to decide the ADC bit-resolutions and the number of activated rows in the proposed CIM macro. In addition, for the ADC operation, the AMU-based reference col-umns are utilized for generating ADC reference voltages, with which low-cost 4-bit coarse-fine flash ADC has been designed. The 256×80 P-8T SRAM CIM macro implementation using 28nm CMOS process shows that the proposed CIM shows the accuracies of 91.46% and 66.67% with CIFAR-10 and CIFAR-100 dataset, respectively, with the energy efficiency of 50.07-TOPS/W.