{"title":"Modeling and simulation-based analysis of effectiveness of tactical level chemical defense operations","authors":"Sung-Gil Ko, Woo-Seop Yun, Tae-Eog Lee","doi":"10.1109/WSC.2016.7822343","DOIUrl":null,"url":null,"abstract":"The objective of tactical level chemical defense operations is to protect forces from chemical attack and restore combat power. To accomplish the objective of chemical defense, combat units, higher level command, chemical protective weapons and support units must perform their respective roles and also cooperate with each other. The aim of this study is to the evaluate the effect of factors affecting chemical operations. This study presents a chemical defense operations model using a DEVS formalism and its virtual experiments. The virtual experiments evaluated protection effectiveness by varying chemical operation factors such as 1) detection range, 2) MOPP transition time, 3) NBC report make-up time, 4) report transmission time, and 5) chemical reconnaissance patrol time. The results of the experiments showed that chemical reconnaissance patrol time and communication time are as important as detection range in terms of strength preservation.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The objective of tactical level chemical defense operations is to protect forces from chemical attack and restore combat power. To accomplish the objective of chemical defense, combat units, higher level command, chemical protective weapons and support units must perform their respective roles and also cooperate with each other. The aim of this study is to the evaluate the effect of factors affecting chemical operations. This study presents a chemical defense operations model using a DEVS formalism and its virtual experiments. The virtual experiments evaluated protection effectiveness by varying chemical operation factors such as 1) detection range, 2) MOPP transition time, 3) NBC report make-up time, 4) report transmission time, and 5) chemical reconnaissance patrol time. The results of the experiments showed that chemical reconnaissance patrol time and communication time are as important as detection range in terms of strength preservation.