Implementation of Single and Multi Linear Regression for Prediction of Energy Consumption based on Previous Data of Energy Production

Quota Alief Sias, Sol Lim, Rahma Gantassi, Yonghoon Choi
{"title":"Implementation of Single and Multi Linear Regression for Prediction of Energy Consumption based on Previous Data of Energy Production","authors":"Quota Alief Sias, Sol Lim, Rahma Gantassi, Yonghoon Choi","doi":"10.1109/ICAIIC57133.2023.10066989","DOIUrl":null,"url":null,"abstract":"This paper describes the implementation of artificial intelligence (AI) using single linear regression (SLR) and multiple linear regression (MLR) methods to predict daily energy needs. SLR implementation is applied using one input variable that is the total energy produced. MLR implementation is applied with more than one input variable, which is taken from detailed energy production data from various energy sources such as gas, coal, geothermal, water, wind, biomass, oil, etc. This paper shows that energy demand prediction can be obtained by analyzing energy production data from previous time. MLR implementation shows better performance because it can get a smaller error value than SLR implementation. This paper explains that energy demand and supply can be analyzed directly together to produce a more comprehensive analysis.","PeriodicalId":105769,"journal":{"name":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC57133.2023.10066989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the implementation of artificial intelligence (AI) using single linear regression (SLR) and multiple linear regression (MLR) methods to predict daily energy needs. SLR implementation is applied using one input variable that is the total energy produced. MLR implementation is applied with more than one input variable, which is taken from detailed energy production data from various energy sources such as gas, coal, geothermal, water, wind, biomass, oil, etc. This paper shows that energy demand prediction can be obtained by analyzing energy production data from previous time. MLR implementation shows better performance because it can get a smaller error value than SLR implementation. This paper explains that energy demand and supply can be analyzed directly together to produce a more comprehensive analysis.
基于能源生产前期数据的单、多元线性回归预测能源消费
本文描述了使用单线性回归(SLR)和多元线性回归(MLR)方法预测日常能源需求的人工智能(AI)的实现。单反实现使用一个输入变量,即产生的总能量。MLR实现采用多个输入变量,这些输入变量取自各种能源(如天然气、煤炭、地热、水、风能、生物质能、石油等)的详细能源生产数据。通过分析以往的能源生产数据,可以对能源需求进行预测。MLR实现比SLR实现获得更小的误差值,从而表现出更好的性能。本文解释了能源需求和供应可以直接一起分析,从而产生更全面的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信