A New Finger Vein Recognition Method Based on LBP and 2DPCA

Na Hu, Hui Ma, Tao Zhan
{"title":"A New Finger Vein Recognition Method Based on LBP and 2DPCA","authors":"Na Hu, Hui Ma, Tao Zhan","doi":"10.23919/CHICC.2018.8483832","DOIUrl":null,"url":null,"abstract":"Finger vein recognition is an emerging biometrics technology. Using the global information of finger vein images, this paper presents a method of finger vein recognition combining the texture feature fusion algorithm of LBP operator and 2DPCA algorithm. First of all, the texture feature of finger vein image was extracted by LBP operator, and then a two-dimensional principal component analysis is used to project the transformed image for feature extraction. Euclidean distance measures the similarity between test and training samples. Experiments in the Tianjin Intelligence Lab image database and FV-USM finger vein database show that the proposed method is effective and reliable and improves the performance of a finger-vein identification system.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Finger vein recognition is an emerging biometrics technology. Using the global information of finger vein images, this paper presents a method of finger vein recognition combining the texture feature fusion algorithm of LBP operator and 2DPCA algorithm. First of all, the texture feature of finger vein image was extracted by LBP operator, and then a two-dimensional principal component analysis is used to project the transformed image for feature extraction. Euclidean distance measures the similarity between test and training samples. Experiments in the Tianjin Intelligence Lab image database and FV-USM finger vein database show that the proposed method is effective and reliable and improves the performance of a finger-vein identification system.
基于LBP和2DPCA的手指静脉识别新方法
手指静脉识别是一种新兴的生物识别技术。利用手指静脉图像的全局信息,提出了一种结合LBP算子纹理特征融合算法和2DPCA算法的手指静脉识别方法。首先利用LBP算子提取手指静脉图像的纹理特征,然后利用二维主成分分析对变换后的图像进行投影进行特征提取。欧几里得距离度量测试样本和训练样本之间的相似性。在天津智能实验室图像数据库和FV-USM指静脉数据库中进行的实验表明,该方法有效可靠,提高了指静脉识别系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信