Precipitation Inversion from MWHTS Data Using Tensorflow Framework

Kang Liu, Jieying He, Haonan Chen
{"title":"Precipitation Inversion from MWHTS Data Using Tensorflow Framework","authors":"Kang Liu, Jieying He, Haonan Chen","doi":"10.1109/piers55526.2022.9792999","DOIUrl":null,"url":null,"abstract":"The microwave humidity and temperature sounder (MWHTS) carried by FY-3D meteorological satellite is used to observe the vertical distribution of global atmospheric humidity, water vapor content, rainfall and other space meteorological data all day and all-weather, which plays an important role in atmospheric detection. In this paper, based on Tensorflow deep learning framework, using FY-3D satellite MWHTS data, we established precipitation inversion system from the perspective of neural network and random forest, and verified it with GPM rainfall product. The results show that both random forest (RFR) and neural network (MLP) model are feasible in precipitation inversion, The MSE is 1.76 and 1.84 respectively and the R2 is 0.79 and 0.78 respectively over ocean area. As the representative of ensemble learning, random forest has higher robustness and generalization ability. At the same time, it also displays that observation data of FY-3D MWHTS can show high application value in precipitation inversion.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"111 3S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The microwave humidity and temperature sounder (MWHTS) carried by FY-3D meteorological satellite is used to observe the vertical distribution of global atmospheric humidity, water vapor content, rainfall and other space meteorological data all day and all-weather, which plays an important role in atmospheric detection. In this paper, based on Tensorflow deep learning framework, using FY-3D satellite MWHTS data, we established precipitation inversion system from the perspective of neural network and random forest, and verified it with GPM rainfall product. The results show that both random forest (RFR) and neural network (MLP) model are feasible in precipitation inversion, The MSE is 1.76 and 1.84 respectively and the R2 is 0.79 and 0.78 respectively over ocean area. As the representative of ensemble learning, random forest has higher robustness and generalization ability. At the same time, it also displays that observation data of FY-3D MWHTS can show high application value in precipitation inversion.
基于Tensorflow框架的MWHTS降水反演
FY-3D气象卫星搭载的微波温湿度测深仪(MWHTS)可全天候观测全球大气湿度、水汽含量、降雨量等空间气象数据的垂直分布,在大气探测中发挥着重要作用。本文基于Tensorflow深度学习框架,利用FY-3D卫星MWHTS数据,从神经网络和随机森林的角度建立降水反演系统,并用GPM降水产品进行验证。结果表明,随机森林(RFR)和神经网络(MLP)模型在降水反演中均是可行的,海洋区域的MSE分别为1.76和1.84,R2分别为0.79和0.78。随机森林作为集成学习的代表,具有较高的鲁棒性和泛化能力。同时也说明了FY-3D MWHTS的观测资料在降水反演中具有较高的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信