FiPPiE: A Computationally Efficient Differentiable method for Estimating Fundamental Frequency From Spectrograms

L. Finkelstein, Chun-an Chan, Vincent Wan, H. Zen, Rob Clark
{"title":"FiPPiE: A Computationally Efficient Differentiable method for Estimating Fundamental Frequency From Spectrograms","authors":"L. Finkelstein, Chun-an Chan, Vincent Wan, H. Zen, Rob Clark","doi":"10.21437/ssw.2023-34","DOIUrl":null,"url":null,"abstract":"In this paper we present FiPPiE, a Filter-Inferred Pitch Poste-riorgram Estimator – a method of estimating fundamental frequency from spectrograms, either linear or mel, by applying a special kind of filter in the spectral domain. Unlike other works in this field, we developed a procedure for training an optimized filter (or kernel) for this type of estimation. FiPPiE, based on this optimized filter, demonstrated itself as a reliable fundamental frequency estimator that is computationally efficient, differentiable, and easily implementable. We demonstrate the performance of the method both by the analysis of its behavior on human recordings, and by the stability analysis with help of an automated system.","PeriodicalId":346639,"journal":{"name":"12th ISCA Speech Synthesis Workshop (SSW2023)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th ISCA Speech Synthesis Workshop (SSW2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ssw.2023-34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present FiPPiE, a Filter-Inferred Pitch Poste-riorgram Estimator – a method of estimating fundamental frequency from spectrograms, either linear or mel, by applying a special kind of filter in the spectral domain. Unlike other works in this field, we developed a procedure for training an optimized filter (or kernel) for this type of estimation. FiPPiE, based on this optimized filter, demonstrated itself as a reliable fundamental frequency estimator that is computationally efficient, differentiable, and easily implementable. We demonstrate the performance of the method both by the analysis of its behavior on human recordings, and by the stability analysis with help of an automated system.
从谱图估计基频的一种计算效率高的可微方法
在本文中,我们提出了FiPPiE,一个滤波-推断基音后阶估计器-一种通过在谱域中应用一种特殊的滤波器从谱图中估计基频的方法,无论是线性谱图还是线性谱图。与该领域的其他工作不同,我们为这种类型的估计开发了一个训练优化过滤器(或核)的过程。基于这种优化滤波器的FiPPiE,证明了它是一种可靠的基频估计器,具有计算效率高、可微、易于实现的特点。我们通过分析其在人类记录上的行为以及在自动化系统的帮助下进行稳定性分析来证明该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信