Bayesian inference for stochastic epidemics in closed populations

G. Streftaris, G. Gibson
{"title":"Bayesian inference for stochastic epidemics in closed populations","authors":"G. Streftaris, G. Gibson","doi":"10.1191/1471082X04st065oa","DOIUrl":null,"url":null,"abstract":"We consider continuous-time stochastic compartmental models that can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in a more flexible model for many diseases. Following a Bayesian approach we show how approximation methods can be applied to design efficient MCMC algorithms with favourable mixing properties for fitting non-Markovian models to partial observations of epidemic processes. The methodology is used to analyse real data concerning a smallpox outbreak in a human population, and a simulation study is conducted to assess the effects of the frequency and accuracy of diagnostic tests on the information yielded on the epidemic process.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st065oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

We consider continuous-time stochastic compartmental models that can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in a more flexible model for many diseases. Following a Bayesian approach we show how approximation methods can be applied to design efficient MCMC algorithms with favourable mixing properties for fitting non-Markovian models to partial observations of epidemic processes. The methodology is used to analyse real data concerning a smallpox outbreak in a human population, and a simulation study is conducted to assess the effects of the frequency and accuracy of diagnostic tests on the information yielded on the epidemic process.
封闭种群中随机流行病的贝叶斯推断
我们考虑连续时间随机区室模型,可以应用于兽医流行病学来模拟传染病的群内动力学。我们关注的是马尔可夫流行病模型的扩展,允许个体的感染期遵循威布尔分布,从而为许多疾病提供更灵活的模型。根据贝叶斯方法,我们展示了如何将近似方法应用于设计具有良好混合特性的高效MCMC算法,以拟合非马尔可夫模型到流行病过程的部分观测值。该方法用于分析关于人口中天花爆发的真实数据,并进行了模拟研究,以评估诊断测试的频率和准确性对所获得的关于流行病过程的信息的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信