Fuzzy Min-Max Neural Networks for Business Intelligence

Seba Susan, Satish Kumar Khowal, Ashwini Kumar, Arun Kumar, Anurag Singh Yadav
{"title":"Fuzzy Min-Max Neural Networks for Business Intelligence","authors":"Seba Susan, Satish Kumar Khowal, Ashwini Kumar, Arun Kumar, Anurag Singh Yadav","doi":"10.1109/ISCBI.2013.31","DOIUrl":null,"url":null,"abstract":"In this paper the supervised application of fuzzy min-max neural networks to business intelligence is discussed. It utilizes fuzzy sets as pattern classes and builds a fuzzy hyper box for each class in a single pass of the test data. The fuzzy set hyper box is defined by its min point and max point membership functions which are determined by an expansion-contraction process. The best hyper box conforming to the highest memberships is used for the classification of the test data to a particular class.","PeriodicalId":311471,"journal":{"name":"2013 International Symposium on Computational and Business Intelligence","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Computational and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2013.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper the supervised application of fuzzy min-max neural networks to business intelligence is discussed. It utilizes fuzzy sets as pattern classes and builds a fuzzy hyper box for each class in a single pass of the test data. The fuzzy set hyper box is defined by its min point and max point membership functions which are determined by an expansion-contraction process. The best hyper box conforming to the highest memberships is used for the classification of the test data to a particular class.
商业智能中的模糊最小-最大神经网络
本文讨论了模糊最小-最大神经网络在商业智能中的监督应用。它利用模糊集作为模式类,并在一次测试数据中为每个类构建一个模糊超框。模糊集超盒由其最小点和最大点隶属函数定义,这两个隶属函数由膨胀-收缩过程确定。符合最高隶属度的最佳超盒用于将测试数据分类到特定的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信